You are viewing the site in preview mode
Skip to main content
Year |
\(\hbox {AUC}_{\textrm{ROC}}\) |
\(\hbox {AUC}_{\textrm{PRG}}\) | PCC | TSS | CBI | COR | MAE | logloss | RMSE |
---|
2015 | 0.89 | 0.84 | 0.88 | 0.75 | 0.62 | 0.58 | 0.41 | 0.78 | 0.53 |
2016 | 0.9 | 0.83 | 0.83 | 0.67 | 0.65 | 0.59 | 0.43 | 0.85 | 0.56 |
2017 | 0.92 | 0.89 | 0.89 | 0.78 | 0.62 | 0.68 | 0.37 | 0.65 | 0.49 |
2018 | 0.82 | 0.64 | 0.81 | 0.62 | 0.69 | 0.55 | 0.42 | 0.67 | 0.5 |
2019 | 0.83 | 0.68 | 0.82 | 0.65 | 0.66 | 0.56 | 0.41 | 0.82 | 0.53 |
2020 | 0.86 | 0.76 | 0.82 | 0.64 | 0.72 | 0.55 | 0.41 | 0.74 | 0.52 |
2021 | 0.92 | 0.86 | 0.87 | 0.75 | 0.69 | 0.59 | 0.43 | 0.84 | 0.56 |
- The table displays median results from model testing across various test folds (see Section "Evaluation") for the years 2015 to 2021. The analysis included the following metrics: area under the receiver operating characteristic curve (\(\hbox {AUC}_{\textrm{ROC}}\)), area under the precision-recall-gain curve (\(\hbox {AUC}_{\textrm{PRG}}\)), percent correctly classified (PCC), true skill statistic (TSS), continuous Boyce index (CBI), Pearson correlation (COR), mean absolute error (MAE), root mean square error (RMSE), and log loss (logloss). Values rounded to two decimal digits