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Long-term dynamics of trematode infections 
in common birds that use farmlands as their 
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Abstract 

Background: The biodiversity of farmland habitats is witnessing unprecedented change, mostly in declines and 
simplification of assemblages that were established during centuries of the use of traditional agricultural techniques. 
In Central Europe, conspicuous changes are evident  in populations of common farmland birds, in strong contrast to 
forest birds in the same region. However, there is a lack of information on longitudinal changes in trematodes that are 
associated with common farmland birds, despite the fact that diversity of trematodes is directly linked to the preser-
vation of long-established food webs and habitat use adaptations of their hosts.

Methods: We analyzed the population trends of trematodes for the period 1963–2020 in six bird species that use 
Central European farmlands as their predominant feeding habitats. Namely, we examined Falco tinnunculus, Vanellus 
vanellus, winter populations of Buteo buteo, Ciconia ciconia, extravilan population of Pica pica, and Asio otus, all origi-
nating from the Czech Republic.

Results: We observed dramatic population losses of all trematode species in C. ciconia and V. vanellus; the changes 
were less prominent in the other examined hosts. Importantly, the declines in prevalence and intensity of infection 
affected all previously dominant species. These included Tylodelphys excavata and Chaunocephalus ferox in C. ciconia, 
Lyperosomum petiolatum in P. pica, Strigea strigis in A. otus, Neodiplostomum attenuatum and Strigea falconis in B. buteo 
(χ2 test P < 0.001 each), and Echinoparyphium agnatum and Uvitellina adelpha in V. vanellus (completely absent in 
2011–2000). In contrast, the frequency and spectrum of isolated records of trematode species did not change to any 
large extent except those in V. vanellus.

Conclusions: The analysis of six unrelated common bird species that use farmlands as their feeding habitats revealed 
a previously unreported collapse of previously dominant trematode species. The previously dominant trematode spe-
cies declined in terms of both prevalence and intensity of infection. The causes of the observed declines are unclear; 
of note is, however, that some of the broadly used agrochemicals, such as azole fungicides, are well known for their 
antihelminthic activity. Further research is needed to provide direct evidence for effects of field-realistic concentra-
tions of azole fungicides on the survival and fitness of trematodes.

Graphical abstract: Keywords: Agricultural landscapes, Common farmland birds, Biodiversity decline, Helminths, 
Population dynamics, Trematoda
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Background
Metazoan parasites are considered one of the most 
diverse, threatened, and under-protected animals on 
Earth [1]. The roles of parasites in the ecosystem remain 
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understudied and underappreciated [2]. Moreover, 
only a very small number of parasite species have well-
documented distributions or population sizes [1]. How-
ever, the identification of species that are at the greatest 
risk of extinction requires the availability of robust data, 
particularly the evidence of changes in diversity and/or 
distribution in time [3]. The rare species are not neces-
sarily equal to threatened species. Therefore, evaluation 
of the conservation status of threatened taxa requires 
knowledge not only of the rarity of the respective spe-
cies but also of the population trends or habitat dete-
rioration. The evidence for population size reduction 
over a period of ≥ 10 years or ≥ 3 generations represents 
one of the three major criteria for the inclusion of the 
respective species as threatened (category Vulnerable or 
higher) in the International Union for Conservation of 
Nature (IUCN) Red List (https:// www. iucnr edlist. org/ 
resou rces/ summa ry- sheet). Concerning the trematode 
bird host species in the study area, in central Europe, the 
most conspicuous population changes are experienced 
by common farmland birds, whereas the populations of 
forest birds remain relatively stable or increasing [4, 5]. 
Longitudinal data on trematode assemblages are scarce, 
and the trematodes of farmland birds have never been 
subjected to a longitudinal study. Previous studies have 
addressed trematode diversity in aquatic birds that serve 
as definitive hosts of trematodes [4, 5] and in snail inter-
mediate hosts [6–10]. The situation may differ regionally 
and the declines may be habitat-specific. The studies that 
were performed in aquatic habitats revealed that trema-
todes face an unprecedented decline in terms of both 
their abundance and species richness in Western coun-
tries, but not so in less exploited regions, such as Siberia 
[6–12]. However, some host species living in the industri-
alized landscapes, such as Turdus philomelos, displayed 
increases in the diversity of helminths during recent dec-
ades [13].

The bird species that use farmlands as their predomi-
nant feeding areas differ in their spatiotemporal distribu-
tion. These species include (1) common farmland birds, 
such as Falco tinnunculus and Vanellus vanellus, (2) spe-
cies which utilize the farmlands nearly exclusively during 
the winter months, such as Buteo buteo, and (3) species 
that use farmlands as their main feeding habitats, such as 
Ciconia ciconia, extravilan (living outside the city/village 
limits) populations of Pica pica, and Asio otus. These spe-
cies overlap only partially in their food preferences, but 
all their food is, in general, affected by the broad-spec-
trum pesticides applied to the agricultural crops [14–16], 
which therefore may affect the complex life cycles of the 
trematodes. During the period 1982–2005, the Czech 
populations of these six species experienced the follow-
ing population trends: Ciconia ciconia stable, +1.9%; P. 

pica stable, +1.7%; A. otus declining, −4.0%; B. buteo sta-
ble, +1.4%; F. tinnunculus stable, 0.0% (but declined by 
35% in 1980–2003 in Europe); and V. vanellus declining, 
−9.9% (also declined by 51% in 1980–2003 in Europe) 
[17, 18]. The studies from Russia and Central Asian coun-
tries from the 1950s, studies from Central Europe from 
the 1960s, and studies from other parts of Europe from 
the recent decades have provided trematode prevalence 
data from large data sets of these six bird host species 
(Additional file  1: Tables S1–S6). However, differences 
in the geographic origin of the data make it difficult to 
estimate prevalence trends in any of the trematodes. See, 
for example, the below-listed pairs of studies from differ-
ent geographic regions, which reported conflicting data 
concerning the prevalence and species richness of trema-
todes in P. pica [19, 20] (Additional file  1: Table  S2), B. 
buteo [21, 22] (Additional file  1: Table  S4), or V. vanel-
lus [23, 24] (Additional file 1: Table S6). No longitudinal 
studies of trematodes have been reported in any of the six 
species.

In the present study, we address long-term changes in 
component communities of trematodes in six bird spe-
cies which feed over the nesting season (five species) or 
in winter only (one species) in open farmland habitats. 
We collected the source data across a time span of over 
half a century. The adults might harbor helminths that 
were acquired during migration and at their wintering 
grounds, and the nestlings are often fed different types 
of food compared to the full-grown birds. Therefore, we 
analyzed the component communities of first-year birds 
and those of adult females or males separately.

Methods
For the period 1963–2020, we examined 147 individu-
als of white stork C. ciconia, 169 individuals of Eurasian 
magpie P. pica, 242 individuals of long-eared owl A. otus, 
259 individuals of common buzzard B. buteo, 1092 indi-
viduals of common kestrel F. tinnunculus, and 78 individ-
uals of northern lapwing V. vanellus for the presence of 
trematodes. The examined birds were stratified according 
to their age to first-year birds (1Y; born in the calendar 
year that they were examined) and adults (birds in their 
second or later calendar year of life) [25, 26]. The adults 
were further stratified according to their sex. To enable 
the adult and 1Y P. pica to be merged in our analyses, 
we identified the sex of both adult and 1Y individuals of 
this species. In another species with low numbers of 1Y 
birds, V. vanellus, we did not keep records of the sex of 
the 1Y birds that we examined in the 1960s and 1970s. 
To analyze the changes in analyzed helminth assemblages 
over time, we split the obtained bird hosts into groups 
according to the time when they were obtained. As the 
availability of the respective species was not equal across 
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the study period, the chosen time intervals were set indi-
vidually for each of the six examined bird host species 
(Table 1). Concerning B. buteo, we examined only adult 
birds obtained in winter months from areas without 
larger forests; in winter months, B. buteo characteristi-
cally occurs in open habitats.

All the examined birds originated from the eastern and 
southern Czech Republic (48.7° N–49.80° N, 13.3° E–18° 
30′ E). We obtained the dead birds before they were pre-
pared for the Comenius Museum collection (Přerov, 
Czech Republic). The birds consisted primarily of 
wounded, hunted, or injured individuals, most of which 
were euthanized in rescue stations due to untreatable 

wounds. Concerning birds provided by the rescue sta-
tions, these included only individuals that were not 
treated with antihelminthic agents prior to being eutha-
nized. As an exception, the examined P. pica were pro-
vided by local hunters; P. pica is listed as game according 
to the Decree of the Ministry of Agriculture No. 
245/2002 Coll. and can be legally hunted without restric-
tion in the period from July 1st to February 28th. Our 
long-term research was authorized by governmental and 
local authorities; our most recent permit was issued by 
the Ministry of the Environment of the Czech Republic 
on August 3, 2009 under No. 11171/ENV/09-747/620/09-
ZS 25.

We performed full-body necropsies, which included 
examination of the subcutaneous tissue, body cavity, 
esophagus, stomach, intestines, cloaca, bursa of Fab-
ricius, liver, gall bladder, spleen, lungs, trachea, bronchus, 
air sacs, kidneys, and oviducts using a stereomicroscope. 
We fixed helminths in 70% ethanol, stained them with 
borax carmine, transferred them through an alcohol 
series to xylene, and mounted them in Canada balsam 
as described previously [27]. We identified the stained 
specimens using taxonomic keys [28–32], also reflect-
ing recent reclassifications. We recorded the abundance 
and species richness of trematodes in each examined 
host individual [33]. We stored representative specimens 
in the Comenius Museum collections (Přerov, Czech 
Republic). Most of the new host–parasite records from 
the examined data sets were published in our previous 
studies, and some of the analyzed helminths were already 
used for molecular analyses [34–39]. The nomenclature 
follows the Fauna Europaea database [40] and recently 
published reclassifications [34, 35, 39, 41]. For details 
concerning the life cycles of the examined parasites, refer 
to Sitko et al. [42].

We calculated basic characteristics of the analyzed 
component communities (mean frequency of infection 
and helminth load) and trematode species-specific mean 
relative prevalence and mean intensity of infection. We 
referred to the most prevalent trematodes in each host 
as dominant. We computed rarefaction curves based 
on the log gamma function for computing combinato-
rial terms to interpolate the trematode species richness 
data [43]. To extrapolate the trematode species rich-
ness, and therefore to estimate the true trematode spe-
cies richness of the analyzed population, we calculated 
the Chao-1 estimator corrected for unseen trematode 
species [44, 45]. We further calculated the following vari-
ables: (1) the total number of trematode species found, 
(2) the total number of individuals found, (3) the trem-
atode species prevalence (the proportion of host indi-
viduals infected by trematodes), and (4) the intensity of 
infection (the number of trematode individuals per host 

Table 1 Numbers of host individuals that were examined in the 
present study

a Because of the low numbers of 1Y P. pica, the sex of the 1Y P. pica was identified 
and these individuals were analyzed together with the adults. The respective 
individuals can be tracked in Additional file 1

Species Number of individuals

Study period 1Y Adult F Adult M

Ciconia ciconia

 1963–2000 18 9 8

 2001–2010 30 4 12

 2011–2020 45 12 9

Pica picaa

 1991–2000 7 20 31

 2001–2010 4 6 16

 2011–2020 1 33 51

Asio otus

 1963–1990 5 29 11

 1991–2000 14 22 11

 2001–2010 10 29 35

 2011–2020 20 29 27

Buteo buteo

 1981–1990 21 18

 1991–2000 102 17

 2001–2010 19 17

 2011–2015 14 10

 2019–2020 29 12

Falco tinnunculus

 1991–1995 16 16 18

 1996–2000 26 76 59

 2001–2005 25 47 43

 2006–2010 75 123 53

 2011–2015 53 125 96

 2016–2020 59 112 70

Vanellus vanellus

 1963–1980 3 13 29

 1981–2000 4 1 7

 2001–2020 4 4 13
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calculated over all individuals that were positive for the 
respective trematodes). We compared the trematode spe-
cies richness using the Sørensen similarity index (pres-
ence/absence-based index that assigns a greater weight 
to shared species than to those found in only one data 
set) and assessed the differences in trematode diversity 
between the study periods using the Shannon diversity 
t-test (compares Shannon H indices with a bias correc-
tion term proposed by Poole [46] of two abundance data 
sets assuming equal sampling conditions). We compared 
the prevalence of dominant trematodes in the ≤ 2000 and 
2011–2020 data sets by χ2 tests, and the intensity of infec-
tion of the ≤ 2000 and 2011–2020 data sets by the Mann–
Whitney rank-sum test (Shapiro–Wilk normality tests 
failed in all cases). In the Results section, we describe 
the trematode communities in more detail with regard 
to the host age, host sex, and year examined. However, 
as the resulting data were highly variable, the study was 
not sufficiently powered to test for possible differences at 
this scale. We performed all the calculations in SigmaPlot 
12.0, EstimateS 9.1.0, and PAST 2.14. Data are shown as 
mean ± SD unless stated otherwise; data for the intensity 
of infection are shown as mean ± SE.

Results
Total numbers of trematodes
We collected a total of 15,549 individuals belonging 
to 33 species of trematodes, which represented host-
species-specific component communities in C. ciconia 
(9751 individuals, 9 trematode species; Additional file 1: 
Table  S7), P. pica (239 individuals, 8 trematode species; 
Additional file  1: Table  S8), A. otus (948 individuals, 4 
trematode species; Additional file  1: Table  S9), B. buteo 
(4363 individuals, 10 trematode species; Additional file 1: 
Table  S10), F. tinnunculus (69 individuals, 5 trematode 
species; Additional file  1: Table  S11), and V. vanellus 
(179 individuals, 8 trematode species; Additional file  1: 
Table S12).

Changes at the level of individual host species
Trematodes in the examined host species displayed 
strong differences in population trends. We observed 
dramatic population losses of all trematode species in C. 
ciconia (Fig. 1), in which the number of trematode species 

per host individual declining from 1.2 ± 1.0 in 1963–2000 
to 0.7 ± 0.7 in 2001–2010 and 0.2 ± 0.5 in 2011–2020. 
We observed less extensive declines in helminths in P. 
pica (Fig. 2) and A. otus (Fig. 3). In B. buteo, the only two 
characteristic trematode species were present until the 
period 2011–2015, declining to a third or less of their 
original prevalence only in recent years (Fig.  4). In this 
species, the number of trematode species per host indi-
vidual declined from 1.0 ± 1.5 in 2011–2015 to 0.2 ± 0.5 
in 2019–2020. In F. tinnunculus, the prevalence of trema-
todes was negligible from the very beginning of the study 
period (Fig. 5). In V. vanellus, we found trematodes only 
in host individuals examined prior to 1980, when the 
number of trematode species per host individual was at 
0.5 ± 0.7. We did not find any trematodes in V. vanellus 
after that time, despite examining 33 host individuals of 
various sex and age during the period 1981–2020. Rar-
efaction analyses indicated that the trematode assem-
blages of five of the six birds consisted of lower numbers 
of trematode species when compared to those analyzed 
in the same study area one or more decades earlier 
(Figs. 1, 2, 3, 4, and 6); only the data from F. tinnunculus 
indicated no decline; however, the vast majority of exam-
ined F. tinnunculus were free of any trematodes already at 
the beginning of the study period (Fig. 5).

Despite a sharp decrease in helminth abundance, the 
Chao-1 trematode species richness in C. ciconia, P. pica, 
B. buteo, and F. tinnunculus did not decrease (Table 2). In 
contrast, three of the four species were present in A. otus 
only prior to 1990, which translated into a sharp decline 
of the Chao-1 trematode species richness from 5.0 ± 2.2 
in 1963–1990 to 1.0 ± 0.0 trematode species in all subse-
quent study periods. In V. vanellus, the Chao-1 trematode 
species richness reached 8.5 ± 1.3 in 1963–1980. After 
1980, the examined V. vanellus did not contain any sin-
gle trematode individual; therefore, the species richness 
for the later time periods cannot be estimated (Table 2). 
A comparison of diversity using the Sørensen similarity 
index and Shannon diversity t-test is provided in Table 2. 
The rarefaction analyses and the Chao-1 species rich-
ness estimator point to the fact that the overall trematode 
species richness of the study bird hosts changed only to 
a limited extent. However, this perceived stability of the 

(See figure on next page.)
Fig. 1 Dynamics of trematode assemblages associated with the Czech population of Ciconia ciconia. (a) The rarefaction curves (red; 95% 
confidence intervals in blue) of component communities in C. ciconia calculated separately for each of the four study periods (1963–2000, 2001–
2010, 2011–2020). Dynamics of changes in the number of trematode species per host individual (b), the total number of trematode species found 
(c), and the prevalence (d) and the intensity of infection ± SE (e). The data for the prevalence and the intensity of infection are shown as a heatmap; 
the prevalence is shown as a percent of infected hosts, with the color green assigned to the highest prevalence of the respective trematode species 
and white assigned to zero prevalence. A similar color code of the heatmap was used to visualize the intensity of infection; however, the whole 
color code scale of the intensity of infection is based on all fields within the heatmap. Source data are provided in Additional file 1: Table S7
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Fig. 1 (See legend on previous page.)
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study assemblages was can be explained by the isolated 
records of trematode species that were likely acquired 
from rarely exploited food sources, while the previously 
dominant species which were characteristic of the exam-
ined bird species declined (Fig.  7), as shown using the 
trematode-specific analyses below.

The decrease in the diversity of component com-
munities from the earliest to the most recent available 
time periods was statistically significant in four of the 
six examined species (see Table  2 for more detail). The 
exceptions were the trematodes of P. pica and F. tinnun-
culus (Table 2). In P. pica, there was a decline in trema-
tode species associated with the examined host in the 
first study period (1991–2000), but other trematode spe-
cies were newly recorded in this species only in recent 
years. The second species in which there were no signifi-
cant dynamics in the diversity of associated trematode 
communities, F. tinnunculus, generally had a low number 
and prevalence of trematodes, and we recorded both spe-
cies associated with F. tinnunculus in roughly the same 
prevalence and intensity of infection across all the exam-
ined time periods (Fig. 5).

Species‑specific changes
In C. ciconia, two trematode  species, Tylodelphys exca-
vata and Chaunocephalus ferox, were characteristically 
considered dominant; the first  species had 40.0% prev-
alence prior to 2000 and the latter species had 60.0% 
prevalence prior to 2000. However, their prevalence 
decreased in 2001–2010 and further declined in 2011–
2020, when the prevalence reached 12.1% and 6.1%, 
representing a  decline of 70% and 90% (χ2 test P < 0.001 
each; Fig.  1). Despite the sharp declines in prevalence, 
the intensity of infection by T. excavata did not change, 
and reached 208 ± 61 individuals per host in the ≤ 2000 
period and 127 ± 51 individuals per host in 2011–2020 
(Mann–Whitney rank-sum test P > 0.05; n1 = 14, n2 = 8, 
T = 80, U = 44). There was a similar trend in C. ferox, 
the incidence of which reached 36 ± 24 individuals per 
host in the ≤ 2000 period and 6 ± 3 individuals per host 
in 2011–2020 (Mann–Whitney rank-sum test P > 0.05; 
n1 = 21, n2 = 4, T = 37.5, U = 27.5). Another character-
istic parasite species of storks, Cathaemasia hians, was 
completely absent in the examined C. ciconia after 2001. 

Isolated records of two species, Stomylotrema pictum 
and Bilharziella polonica, each represented by a single 
individual, were the only species that were recorded for 
the first time in the most recent study period 2011–2020 
(Fig. 1).

In P. pica, the dominant trematode species, Lyperoso-
mum petiolatum, was characteristically found in 44.8% 
of examined host individuals before 2000. However, its 
prevalence declined in 2011–2020 by 58% to only 18.8% 
(χ2 test P < 0.001; Fig. 2). The intensity of infection by L. 
petiolatum decreased from 4.6 ± 0.6 individuals per host 
in the ≤ 2000 period to 2.2 ± 0.3 individuals per host in 
2011–2020 (Mann–Whitney rank-sum test P = 0.007; 
n1 = 26, n2 = 16, T = 240.5, U = 140.5). Other trematode 
species were present in low prevalence, with no evidence 
for their decline. Isolated records of two species, Pros-
thogonimus ovatus and Morishitium elongatum, each 
found in a single host individual, were the only species 
that were recorded for the first time in the most recent 
study period 2011–2020 (Fig. 2).

In A. otus, we found only four trematode species. 
The dominant trematode species of adult A. otus, Stri-
gea strigis, was characteristically found in about a third 
of examined host individuals before 1990. However, its 
prevalence gradually declined from 23.9% to just 6.6% (χ2 
test P < 0.001; Fig. 3). The intensity of infection by S. stri-
gis declined correspondingly to just one tenth of the orig-
inal intensity of infection, from 27.1 ± 8.7 individuals per 
host in the ≤ 2000 period to 2.8 ± 0.3 individuals per host 
in 2011–2020 (Mann–Whitney rank-sum test p = 0.036; 
n1 = 22, n2 = 5, T = 36, U = 21). Three other three trema-
tode species were present in low prevalence; we found all 
of them in the first study period before 1990. Other  than 
S. strigis, we did not find any trematode species in A. otus 
that were examined in 1991–2020 (Fig. 3).

In B. buteo, there were two trematode species with high 
prevalence. These were Neodiplostomum attenuatum 
and Strigea falconis, which were present in 29.1% and 
32.9% of examined B. buteo prior to 2000. Their preva-
lence remained similar until 2011–2015; the intensity of 
infection was generally high, showing strong fluctuations. 
However, the two trematode species were associated 
with only a fraction of the original numbers of B. buteo 
in its most recently examined cohort from 2019–2020, 

Fig. 2 Dynamics of trematode assemblages associated with the Czech extravilan population of Pica pica. (a) The rarefaction curves (red; 95% 
confidence intervals in blue) of component communities in P. pica calculated separately for each of the three study periods (1991–2000, 2001–2010, 
2011–2020). Dynamics of changes in the number of trematode species per host individual (b), the total number of trematode species found (c), 
and the prevalence (d) and the intensity of infection ± SE (e). The data for the prevalence and the intensity of infection are shown as a heatmap; the 
prevalence is shown as a percent of infected hosts, with the color green assigned to the highest prevalence of the respective trematode species 
and white assigned to zero prevalence. A similar color code of the heatmap was used to visualize the intensity of infection; however, the whole 
color code scale of the intensity of infection is based on all fields within the heatmap. Source data are provided in Additional file 1: Table S8

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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Fig. 3 Dynamics of trematode assemblages associated with the Czech population of Asio otus. (a) The rarefaction curves (red; 95% confidence 
intervals in blue) of component communities in A. otus calculated separately for each of the four study periods (1963–1990, 1991–2000, 2001–2010, 
2011–2020). Dynamics of changes in the number of trematode species per host individual (b), the total number of trematode species found (c), 
and the prevalence (d) and the intensity of infection ± SE (e). The data for the prevalence and the intensity of infection are shown as a heatmap; the 
prevalence is shown as a percent of infected hosts, with the color green assigned to the highest prevalence of the respective trematode species 
and white assigned to zero prevalence. A similar color code of the heatmap was used to visualize the intensity of infection; however, the whole 
color code scale of the intensity of infection is based on all fields within the heatmap. Source data are provided in Additional file 1: Table S9
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with the intensity of infection also declining to the lowest 
values (Fig.  4). The differences in N. attenuatum and S. 
falconis prevalence between the ≤ 2000 cohort and 2011–
2020 cohort were statistically significant (χ2 test P < 0.001 
each). There were no significant changes in the inci-
dence of these two species. In N. attenuatum, the inci-
dence reached 25 ± 6 individuals per host in the ≤ 2000 
period and 80 ± 36 individuals per host in 2011–2020 
(Mann–Whitney rank-sum test P > 0.05; n1 = 46, n2 = 11, 
T = 356.5, U = 215.5). In S. falconis, the incidence 
reached 10 ± 3 individuals per host in the ≤ 2000 period 
and 11 ± 4 individuals per host in 2011–2020 (Mann–
Whitney rank-sum test P > 0.05; n1 = 52, n2 = 15, T = 517, 
U = 383). We found eight other trematode species in B. 
buteo; however, these were all rather isolated records, 
although sometimes at high intensity of infection, such 
as in the case of Tylodelphys circibuteonis and Echi-
noparyphium agnatum (Fig. 1).

First-year birds of F. tinnunculus were free  of any trem-
atodes; adult F. tinnunculus were rarely infected by five 
species of trematodes, which did not display any seasonal 
trends. We found the highest prevalence of infections 
in 2001–2005; there were no species that would newly 
emerge in the study periods after 2006 (Fig. 5).

In V. vanellus, we recorded eight species of trematodes 
in the first study period prior to 1980. The V. vanellus 
trematodes were dominated by Echinoparyphium  aco-
niatum  (prevalence 12.3%, intensity of infection 11 ± 5 
individuals per host) and Uvitellina adelpha (prevalence 
8.8%, intensity of infection 1.2 ± 0.2 individuals per host). 
After 1980, all examined V. vanellus were free of any 
trematodes (Fig. 6).

Discussion
The present study provides another important piece of 
evidence of the simplification of helminth communi-
ties. The data complement our previous study on wet-
land birds [12] by showing that trematode species that 
have dominated the component communities in various 
birds that use farmlands as their feeding habitats have 
experienced massive declines, and in some cases they 
have completely vanished from the analyzed bird host 

populations. These changes have affected in particular 
the previously dominant trematode species that had been 
characteristic of the examined host bird species (Fig. 7).

We assumed that the population changes in com-
mon farmland birds could be associated with changes 
in the assemblages of trematodes, as their presence is 
directly linked to the preservation of long-established 
food webs and habitat use adaptations of their hosts 
[47–49]. The most prominent changes were, indeed, 
associated with the trematodes of host species, which 
experienced a strong population decline (V. vanellus). 
However, strong effects were also found in bird species, 
which recently shifted their feeding strategies and cor-
respondingly shifted the spectrum of captured prey (C. 
ciconia) [17, 18]. In contrast, the species richness and 
diversity of trematodes of some other species (F. tinnun-
culus) changed very little throughout the study period, 
and displayed only fluctuations. These fluctuations 
may reflect generally low prevalence of the F. tinnuncu-
lus trematodes, which means that very large cohorts of 
F. tinnunculus would need to be examined to provide a 
definitive answer on whether these fluctuations were 
artifacts, or whether they reflected real changes in the 
F. tinnunculus trematode assemblages (Fig. 5). The asso-
ciation between changes in trematode prevalence and 
changes in feeding strategies of their host birds points to 
the fact that a large part of observed changes could likely 
be determined by changes in the composition of inter-
mediate host assemblages and prey preferences of the 
birds [50–52]. However, the declines in trematodes were 
widespread, involved multiple bird orders, and involved 
both common and rare trematode species. In particular, 
the changes affected the previously dominant trematode 
species of the birds that use farmlands as their feeding 
habitats. In contrast, with the exception of  V. vanellus, 
the frequency and spectrum of isolated records of trema-
tode species did not change to any large extent. This is 
likely related to the random nature of their acquisition 
from rarely exploited food sources, particularly from 
food sources associated with wetlands, as many of these 
trematodes use various wetland snails as their intermedi-
ate hosts.

Fig. 4 Dynamics of trematode assemblages associated with the Czech winter population of Buteo buteo. (a) The rarefaction curves (red; 95% 
confidence intervals in blue) of component communities in B. buteo calculated separately for each of the five study periods (1981–1990, 1991–2000, 
2001–2010, 2011–2020). Dynamics of changes in the number of trematode species per host individual (b), the total number of trematode species 
found (c), and the prevalence (d) and the intensity of infection ± SE (e). The data for the prevalence and the intensity of infection are shown as 
a heatmap; the prevalence is shown as a percent of infected hosts, with the color green assigned to the highest prevalence of the respective 
trematode species and white assigned to zero prevalence. A similar color code of the heatmap was used to visualize the intensity of infection; 
however, the whole color code scale of the intensity of infection is based on all fields within the heatmap. Source data are provided in Additional 
file 1: Table S10

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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Fig. 5 Dynamics of trematode assemblages associated with the Czech population of Falco tinnunculus. (a) The rarefaction curves (red; 95% 
confidence intervals in blue) of component communities in F. tinnunculus calculated based on birds that were examined in study periods 1991–
2000, 2001–2010, and 2011–2020. Dynamics of changes in the number of trematode species per host individual (b), the total number of trematode 
species found (c), and the prevalence (d) and the intensity of infection ± SE (e). The data for the prevalence and the intensity of infection are shown 
as a heatmap; the prevalence is shown as a percent of infected hosts, with the color green assigned to the highest prevalence of the respective 
trematode species and white assigned to zero prevalence. A similar color code of the heatmap was used to visualize the intensity of infection; 
however, the whole color code scale of the intensity of infection is based on all fields within the heatmap. Source data are provided in Additional 
file 1: Table S11
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We recently reported similar or even stronger declines 
in trematodes in freshwater aquatic birds [12]. The 
changes identified in birds that use farmlands as their 
feeding habitats differed from those identified previously 
in freshwater aquatic birds, particularly in Anas platy-
rhynchos. The component communities of A. platyrhyn-
chos faced simplification and dominance by only a few 
surviving species. The two other previously examined 

freshwater aquatic birds, Fulica atra and Chroicocepha-
lus ridibundus, displayed a mixed response, with severe 
declines in previously dominant species and overall sim-
plification of the trematode component communities 
[12].

All the available data are only observational; there-
fore, the causes of observed declines are unclear. In C. 
ciconia, the changes could be related to a decline in the 

Table 2 Comparison of trematode species richness and diversity of the analyzed component communities in the 2010s and earlier 
time periods, using the Sørensen similarity index and Shannon diversity t-test

The numbers of trematode species that were found at both analyzed time points and those that were found only in one of the indicated time periods are shown

Ciconia ciconia Pica pica Asio otus Buteo buteo Falco tinnunculus Vanellus vanellus

Compared time 
periods

1963–2000 vs. 
2011–2020

1991–2000 vs. 
2011–2020

1963–1990 vs. 
2011–2020

1981–1990 vs. 
2019–2020

1991–2000 vs. 
2011–2020

1963–1980 vs. 
1981–2020

Shannon diversity 
t-test (t; df; P)

16.0; 1663.6; < 0.001 −0.4; 74.6; 0.72 5.9; 514.0; < 0.001 3.1; 43.5; 0.003 −2.0; 16.6; 0.07 N/A (Σn2 = 0)

Sørensen similarity 
index

0.545 0.600 0.400 0.800 1.000 0.000

Number of 
trematode species 
found in both 
study periods

3 3 1 2 2 0

Number of 
trematode species 
found only in the 
first study period

3 2 3 1 0 8

Number of 
trematode species 
found only in the 
last study period

2 2 0 0 0 0

Number of host 
individuals exam-
ined (first/last 
study period)

35/66 58/85 45/76 39/41 211/515 16/33

Number of trema-
tode individuals 
found (first/last 
study period)

3690/1046 154/47 514/14 678/37 16/31 179/0

Number of 
trematode species 
found (first/last 
study period)

6/5 5/5 4/1 3/2 2/2 8/0

Intensity of infection 
(first/last study 
period)

113.1/15.9 2.7/0.6 11.4/0.2 17.4/0.9 0.08/0.06 11.2/0.00

Chao-1 (first/last 
study period)

6.0 ± 0.5/6.0 ± 2.2 6.0 ± 2.2/5.5 ± 1.3 5.0 ± 2.2/1.0 ± 0.0 1.0 ± 0.0/2.0 ± 0.0 2.0 ± 0.3/2.0 ± 0.0 8.5 ± 1.3/N/A (0)

Fig. 6 Dynamics of trematode assemblages associated with the Czech population of Vanellus vanellus. (a) The rarefaction curves (red line; 95% 
confidence intervals in blue) of component communities in V. vanellus calculated only for the first sampling period (1963–1980), as there were no 
species acquired in later time periods (1981–2000, 2001–2020). Dynamics of changes in the number of trematode species per host individual (b), 
the total number of trematode species found (c), and the prevalence (d) and the intensity of infection ± SE (e). The data for the prevalence and the 
intensity of infection are shown as a heatmap; the prevalence is shown as a percent of infected hosts, with the color green assigned to the highest 
prevalence of the respective trematode species and white assigned to zero prevalence. A similar color code of the heatmap was used to visualize 
the intensity of infection; however, the entire color code scale of the intensity of infection is based on all fields within the heatmap. Source data are 
provided in Additional file 1: Table S12

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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contribution of wetland organisms to the diet of this host 
species. The increasing contribution of anthropogenic 
sources of diet also could play a role [53, 54]. Besides 
the changes in feeding habits, the decline in trematode 
prevalence and intensity of infection could be related to 
the changes in farm management and land use since the 
1950s, including agricultural intensification and land-
scape simplification [55]. The common agricultural pol-
icy of the European Union and the collectivism practiced 
in the eastern part of Europe further accelerated the loss 
of uncultivated elements, such as hedgerows, woodlots, 
and ditches [56], resulting in a decline in farmland land-
scape biodiversity [57–59].

An important but under-researched factor is the broad 
use of azole fungicides in agriculture, which has shaped 
communities of various non-target organisms [60–62]. 
Some of the azole fungicides, such as carbendazim, are 
among the most frequently used agrochemicals world-
wide, despite having already been banned in the USA 
and the European Union [63]. The use of azole fungicides 
is directly linked to the abundance of helminths, as the 
same compounds belong to the most effective antipara-
sitic treatments. In veterinary medicine, albendazole or 
mebendazole are commonly used for this purpose [64–
67]; however, many other azole compounds display anti-
helminthic activity of similar extent due to their shared 
mechanism of action that is based on the binding to 
β-tubulin in microtubules [68].

The diversity and abundance of parasites generally 
decreases with human-induced habitat disturbance 
[69–73]. The disruption of spatiotemporal relation-
ships within host assemblages likely facilitated a 
decline in species richness of trematode assemblages. 
Surprisingly, we only rarely identified severe inten-
sity of infection of the respective trematodes, and we 
found no outbreaks of trematode species. This corre-
sponds to the fact that the loss of diversity was accom-
panied by a decline in the intensity of infection. The 
decline in the intensity of infection affected the trema-
tode assemblages of V. vanellus, A. otus, and B. buteo 
most severely; in all three species, the intensity of 
infection declined by more than one order of magni-
tude. Infection intensity also declined several times in 
C. ciconia and P. pica, and maintained the same level 
only in F. tinnunculus, where it was very low through-
out the study period. The trematode biodiversity loss 
was rather gradual, and included the decline in both 
the prevalence and the intensity of infection in the 
respective trematode species. The diversity of the 
trematode assemblages differed strongly among four 
of the six bird host species examined when comparing 
the assemblages in 1963–2000 with those examined 
in 2011–2020; the exceptions were P. pica and F. tin-
nunculus. In general, we observed a simplification of 
the trematode assemblages; in three of the six analyzed 
host species, some or all the trematode species were 
present prior to 2000 but not in the 2011–2020 period. 

Fig. 7 Overview of changes in the prevalence of previously dominant trematode species found in 2000 or earlier as compared to the period 
2011–2020. The prevalence in the two respective time periods and the decline in prevalence of the respective dominant species are indicated. The 
prevalence is shown as a percent of infected hosts, with the color green assigned to the highest prevalence of the respective trematode species 
and white assigned to zero prevalence. All the observed declines in prevalence were found to be significant (χ2 test P < 0.001 each); the declines in 
trematodes of V. vanellus were not tested. Using the same logic, the figure shows the intensity of infection by the previously dominant trematode 
species in the two respective time periods and the change in the intensity of infection of the respective dominant species. The color code used 
follows similar logic as that for the prevalence. All the observed changes in the intensity of infection were tested by the Mann–Whitney rank-sum 
test, which revealed that only the differences in the intensity of infection by Lyperosomum petiolatum and Strigea strigis were significant (P < 0.05 
each); the changes in the intensity of infection in V. vanellus were not tested
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However, there was no such change in F. tinnunculus, 
and both lost and newly acquired species were present 
in C. ciconia and P. pica (Table 2).

Limitations
A limitation of the present study is that it relied on an 
opportunistic sampling design, where the carcasses of five 
of the six examined species consisted solely of wounded 
or injured individuals, and therefore may not necessarily 
represent the helminths that would be present in birds of 
good health. Further, we cannot exclude the possibility 
that trematode species with low prevalence might escape 
detection in any of the study periods due to limited num-
ber of examined host individuals. However, the purpose 
of the study was to illustrate the overall longitudinal 
trends in trematode component communities, not to 
provide a complete list of species that infected the exam-
ined host species. Although the present study is based 
on one of the largest data sets of host individuals among 
the studies of bird trematodes, it still suffers from issues 
associated with limited sample size. The sampling effort 
affects not only trematode richness, but also prevalence, 
intensity, and some of the diversity indices. Especially at 
low prevalence, intensity estimates can be skewed when 
sample size is small. We also cannot exclude the possibil-
ity that the observed population trends may differ from 
those that would be experienced in other regions with 
better-preserved farmland habitats. As we have shown in 
Additional file  1: Tables S1–S6 [19–24, 36, 37, 74–107], 
there are strong differences in the prevalence of trema-
todes among different regions within host distribution 
ranges. However, the present study, which was based on 
definitive hosts, confirmed the declines in trematodes 
reported in previous longitudinal studies on the diver-
sity of trematodes in intermediate hosts in other regions 
[6–10].

Conclusions
The analysis of six unrelated common bird species that 
use farmlands as their feeding habitats revealed a previ-
ously unreported collapse of formerly dominant trema-
tode species. These trematode species declined in terms 
of both prevalence and intensity of infection. In contrast, 
isolated records of a broad range of other trematode 
species continued to be detected throughout the study 
period, which is likely related to occasional use of a broad 
spectrum of food sources. However, the collapse of host–
parasite networks in common bird species that use farm-
lands as their feeding habitats points to yet unknown 
factors that underlie such dramatic changes. As we 
observed most of the declines in recent decades, we spec-
ulate that the use of recently developed agrochemicals, 

perhaps the azole fungicides, also known as anthelmin-
thic agents, may be responsible for the unprecedented 
decline in the farmland trematodes.
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