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Abstract 

Background Ticks are the primary vectors of numerous zoonotic pathogens, transmitting more pathogens than any 
other blood-feeding arthropod. In the northern hemisphere, tick-borne disease cases in humans, such as Lyme borre-
liosis and tick-borne encephalitis, have risen in recent years, and are a significant burden on public healthcare systems. 
The spread of these diseases is further reinforced by climate change, which leads to expanding tick habitats. Switzer-
land is among the countries in which tick-borne diseases are a major public health concern, with increasing incidence 
rates reported in recent years.

Methods In response to these challenges, the “Tick Prevention” app was developed by the Zurich University 
of Applied Sciences and operated by A&K Strategy Ltd. in Switzerland. The app allows for the collection of large 
amounts of data on tick attachment to humans through a citizen science approach. In this study, citizen science data 
were utilized to map tick attachment to humans in Switzerland at a 100 m spatial resolution, on a monthly basis, 
for the years 2015 to 2021. The maps were created using a state-of-the-art modeling approach with the software 
extension spatialMaxent, which accounts for spatial autocorrelation when creating Maxent models.

Results Our results consist of 84 maps displaying the risk of tick attachments to humans in Switzerland, 
with the model showing good overall performance, with median AUCROC values ranging from 0.82 in 2018 to 0.92 
in 2017 and 2021 and convincing spatial distribution, verified by tick experts for Switzerland. Our study reveals 
that tick attachment to humans is particularly high at the edges of settlement areas, especially in sparsely built-up 
suburban regions with green spaces, while it is lower in densely urbanized areas. Additionally, forested areas near cit-
ies also show increased risk levels.

Conclusions This mapping aims to guide public health interventions to reduce human exposure to ticks 
and to inform the resource planning of healthcare facilities. Our findings suggest that citizen science data can be valu-
able for modeling and mapping tick attachment risk, indicating the potential of citizen science data for use in epide-
miological surveillance and public healthcare planning.
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Background
Ticks (Ixodes spp.) serve as vectors for various zoonotic 
pathogens, including viruses, bacteria, and protozoa [1], 
and transmit the most pathogens among all blood-feed-
ing arthropods [2]. Due to their generalist nature, ticks 
pose a potential threat by transmitting infectious agents 
to a vast array of hosts, exceeding 300 species, including 
mammals, birds, and reptiles [3].

In the temperate northern hemisphere, ticks play a 
considerable role as vectors for disease transmission to 
humans [4], with reported cases increasing in both the 
USA [5] and Europe [6] in recent years.

Of particular importance are the diseases tick-borne 
encephalitis (TBE) [7] and Lyme borreliosis [8], which 
is the most frequently transmitted tick-borne human 
disease in the world [9], with 153,120 reported cases in 
the year 2022 (Johns Hopkins Lyme and Tickborne Dis-
eases Dashboard1). In 2022, the US Centers for Disease 
Control and Prevention reported 61,808 cases in the 
United States and estimated that 476,000 people may 
be diagnosed and treated for Lyme disease (Lyme Dis-
ease Surveillance Data, Centers for Disease Control and 
Prevention [CDC], USA, 20242). However, ticks are also 
capable of transmitting numerous other diseases, includ-
ing Alongshan virus [10], Rocky Mountain spotted fever 
[4], and Crimean–Congo hemorrhagic fever [11]. Tick-
borne diseases are not only medically significant due to 
their high incidence rates, but they also pose a burden 
on the public healthcare systems [12, 13]. Furthermore, 
as tick-borne diseases keep spreading to new geographi-
cal areas and higher altitudes [14], the risk of infection 
is increasing for a larger human population, and climate 
change is also contributing to the further spread of tick-
borne diseases [15].

Whether a person becomes infected with a tick-borne 
disease depends on the presence of ticks and whether 
they are carrying pathogens, but also to a large extent on 
human behavior. Contact with ticks in western countries 
occurs primarily during recreational activities such as 
hiking, as well as in green spaces within urban areas [10, 
16, 17]. Data on direct tick attachment to humans can 
be challenging to acquire, and therefore, information on 
tick attachment to humans is typically extrapolated from 
disease cases and tick distribution patterns [16]. How-
ever, tick attachment to companion animals has already 
been mapped for Great Britain [18]. Many other previous 
studies have focused on mapping the habitat suitability of 
ticks [19], which can assist in understanding the drivers 
of their distribution. However, for healthcare planning 

purposes, it is valuable to also consider the spatio-tempo-
ral distribution of tick attachment to humans, as it has a 
significant impact on the strain placed on the healthcare 
system.

Switzerland is one of the countries where the inci-
dence of tick-borne diseases has increased in recent years 
[20]. To address this, the Zurich University of Applied 
Sciences developed the “Tick Prevention” app, which 
uses a citizen science approach to collect data on tick 
attachment to humans [21]. Operated by A&K Strategy 
Ltd. [22], the app enables users to report tick bites and 
thereby provides crucial data for monitoring and under-
standing tick-borne diseases and spatio-temporal trends.

The data collected by the Tick Prevention app (Figs. 1, 
3) can be upscaled with environmental variables to cre-
ate wall-to-wall predictions using methods commonly 
applied in species distribution modeling (SDM), as both 
the data structure and modeling task are the same as 
those in SDM. SDM is widely used for mapping in vari-
ous research areas [23]. However, Lee-Yaw et  al. [24] 
pointed out that the majority of species distribution 
models perform poorly when tested against independ-
ent data, leaving modelers faced with many significant 
challenges. A possible explanation for the poor model 
performance could be the insufficient attention given to 
the spatial properties of the data, especially their spatial 
non-independence, during model training. Recent stud-
ies have emphasized the importance of accounting for 
the characteristics of spatial and temporal data when for-
mulating validation and testing strategies in environmen-
tal modeling [25–28].

In order to overcome the above-mentioned challenges, 
this study addresses three major objectives: (1) to collect 
large-scale data on tick attachment to humans through a 
citizen science approach, (2) to apply a state-of-the-art 
modeling method that addresses current challenges in 
environmental modeling for enhanced reliability of the 
modeled results, and (3) to generate monthly maps of tick 
attachment to humans in Switzerland at a spatial resolu-
tion of 100 m from 2015 to 2021, providing information 
for both the population and policymakers.

Methods
Data processing was executed with the use of the R pack-
ages sf (version 1.0.12; [29, 30]), raster (version 3.6.20; 
[31]), and terra (version 1.7.18; [32]). We used SDM to 
map the monthly tick attachment to humans (Fig.  1). 
The maps created in this study were modeled with spa-
tialMaxent [33], a software extension for the SDM soft-
ware Maxent [34]. All data processing was performed in 
R (version 4.3.1; [35]).

1 https:// www. hopki nslym etrac ker. org/ overv iew/, accessed 22.06.2024.
2 https:// www. cdc. gov/ lyme/, accessed 22.06.2024

https://www.hopkinslymetracker.org/overview/
https://www.cdc.gov/lyme/
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Modeling approach
The data collected by the users of the Tick Prevention 
app (Fig. 1; Section "Tick reports") consisted of presence-
only (PO) data. These data represent occurrence points 
of a species without providing information on where 
the species is absent. When additional data on species 
absences are collected, they are referred to as presence–
absence (PA) data. Occurrence points of a species, or in 
this case of tick attachment to humans, can be utilized 
to generate area-wide predictions. To achieve this, PO or 
PA points are upscaled with comprehensive environmen-
tal variables to produce wall-to-wall predictions. Models 
that are created using PO points often require additional 
background points, also known as pseudo-absences [34, 
36] (see Section "Background points/ pseudo absences"). 
These data are randomly or systematically sampled points 
throughout the whole study area, intended to cover the 
entire value space of the environmental variables used for 
modeling.

The data on tick attachment to humans used in this 
study share the same structure as species occurrence data 
typically used in SDM. Therefore, we apply software and 
methods commonly used in SDM. However, this does 
not imply that we are modeling species distribution; the 
term “SDM” is used in this study purely to describe the 
modeling approach. Since our data points represent tick 
attachment to humans, which inherently combines both 
tick dynamics and human exposure factors, it is not fea-
sible to map these elements separately. Both factors must 
be simultaneously incorporated into the model, as the 
data points capture the interaction between them.

For the upscaling of PO data, various methods are 
employed in SDM to create area-wide maps. Some popu-
lar modeling methods, such as generalized linear mod-
els, generalized additive models, and support vector 
machines, although frequently used for other modeling 
tasks, perform less effectively for SDM [37, 38]. In con-
trast, methods like boosted regression trees, ensemble 
models, or Maxent have demonstrated a more favorable 

Fig. 1 Workflow for mapping tick attachment to humans. Data on tick attachment to humans were collected through the Tick Prevention app. 
These data records served as training data for a model utilizing the software extension spatialMaxent, alongside background points derived 
from environmental variables. These environmental variables encompassed four temporal resolutions: static variables (e.g., digital height model), 
yearly data (e.g., population density), seasonal data (e.g., optical remote sensing data), and monthly data (e.g., weather data). During model creation, 
a variable selection process is initially conducted, where the most significant variables are automatically identified by the model. Subsequently, 
the other model parameters are tuned. The final model is trained with the best-performing parameters and variables. The performance 
of the model was assessed using artificial absence points derived from areas with minimal tick occurrence probability, such as lakes. Subsequently, 
84 maps depicting tick attachment to humans from January 2015 to December 2021 were generated at a spatial resolution of 100 m
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performance [37, 38]. For example, the software Maxent 
is a standalone Java software for SDM that uses a maxi-
mum entropy approach to create the species distribution 
models, and is very popular due to its good performance 
[37, 38] and user-friendliness [39]. In a review by Guill-
era-Arroita et al. [40] it was used in 41% of the reviewed 
SDM studies. Furthermore, it was specifically designed to 
create species distribution models with PO data [36].

As previously noted, poor SDM performance [24] 
may result from neglecting spatial data properties dur-
ing model training, validation, and testing [25–28]. In 
particular, the use of random cross-validation in which 
test data are separated randomly from training data 
tends to result in an overestimation of model predictive 
power [26]. Furthermore, model tuning is also heavily 
influenced by the chosen cross-validation strategy [27, 
28, 33]. The same applies to the selection of variables. It 
has been shown that automated variable selection yields 
superior outcomes compared to modeling approaches 
without such functionalities [27, 41]. If variable selection 
is conducted by an automated algorithm, it means that 
the modeler inputs all relevant variables into the model. 
The algorithm then tests which variables contribute to 
an improvement in model performance and which do 
not. Only the variables that enhance model performance 
are retained, while all others are excluded from the final 
model.

Therefore, we required a modeling method that (1) can 
handle PO data, (2) offers good performance compared 
to other methods, and (3) provides the capabilities for 
spatio-temporal cross-validation, automated tuning, and 
automated variable selection. For these reasons, we used 
the software extension spatialMaxent version 1.0.0 [33] 
for modeling and mapping of tick attachment to humans. 
spatialMaxent serves as an extension for Maxent version 
3.4.4 [34], offering automated functionalities for regular-
ization-multiplier tuning, feature selection, and variable 
selection based on spatial cross-validation [33]. On a 
benchmark dataset of over 200 species [42], it was dem-
onstrated that spatialMaxent models outperform those 
produced using traditional Maxent methods on spatially 
independent test data [33].

For the training, validation, and testing of the model 
with spatio-temporal data, the data were partitioned into 
five folds using the biogeographical regions of Switzer-
land (Fig. 2) for spatial separation [43]. For temporal sep-
aration, the data were divided by months, ensuring that 
each month occurred in only one of the five spatial folds 
during spatial cross-validation (Fig. 2).

With these data, a model was trained with five fold spa-
tio-temporal cross-validation, variable selection, feature 
selection, and regularization multiplier tuning (for details 
see [33]). This model was used to create 84 maps of the 

risk of monthly tick attachment to humans from 2015 to 
2021 (Fig. 1; supplementary information).

Study area
This study focuses on the distribution of tick attachment 
to humans in Switzerland. Switzerland is centrally located 
in Europe (Fig. 2b) and is dominated by mountains, pri-
marily the Alps, covering 70% of its territory. However, 
the majority of the population resides in the relatively flat 
and hilly “Mittelland” [44]. Overall, the Swiss territory 
spans 41,285 km2 [44], with approximately 8.7 million 
residents [45]. In many regions of Switzerland, ticks are 
vectors for multiple pathogens simultaneously and can 
occur in both rural and urban areas [10, 46]. In addition 
to transmitting the pathogens for the commonly occur-
ring diseases Lyme borreliosis and TBE, Stegmüller et al. 
[46] discovered that ticks in Switzerland are also vectors 
for Alongshan virus.

Tick reports
The recent availability of field-collected tick data in Swit-
zerland is limited, as the last significant collection effort 
was conducted by the Swiss Army in 2009 (see [47]). 
This scarcity of recent field data necessitates alternative 
approaches to monitor ticks in Switzerland. To obtain 
good results for mapping tick attachment to humans 
without conducting additional field campaigns, a citizen 
science approach was used. The data on tick attachment 
to humans were collected through the Tick Prevention 
app developed at the Zurich University of Applied Sci-
ences and operated by the ZHAW spin-off A&K Strategy 
Ltd. [22]. Users can log both the location and the time of 
each tick bite (Fig. 3). Since its launch in 2015, this appli-
cation has accumulated a large dataset (Fig. 4). We only 
used data where users were confident that the tick bite 
occurred within a 1 km radius of the reported location, 
resulting in a dataset of 39,235 tick bites documented 
between 2015 and 2021. We removed duplicates, specifi-
cally records of tick attachments to humans occurring in 
the same year and month and on the same raster pixel. 
The tick data were then partitioned into the five biogeo-
graphical spatial folds and refined to ensure that each 
month was represented in only one spatial fold (see Sec-
tion "Modeling approach"). This processing resulted in a 
dataset consisting of 10,292 distinct records.

Background points/pseudo‑absences
Maxent is a PO modeling method and therefore 
requires background points for modeling [34, 36] (see 
Section "Modeling approach"). The number of back-
ground points used for modeling should be sufficiently 
large to comprehensively represent the entire vari-
able space [37]. While the default setting of Maxent 
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employs 10,000 background points, it has been sug-
gested that this quantity may be insufficient for larger 
regions [48, 49]. Given that our study encompasses 
the entire country of Switzerland with a size of 41,285 
km

2 [44], we opted to use more than the usual 10,000 
points to ensure a comprehensive representation of 

the entire variable space. In this study, we modeled 84 
monthly time steps from January 2015 to December 
2021. For each of these time steps, 1000 background 
points were randomly sampled over the whole study 
area using the randomPoints() function from the R 

Fig. 2 Switzerland: Study area and data records. a Records of tick attachment to humans, segregated into spatio-temporal folds based 
on the biogeographical regions in c. Each month is exclusively utilized in one spatio-temporal fold to ensure spatio-temporal independence. b The 
geographical position of Switzerland within Central Europe. c Biogeographical regions of Switzerland employed in creating the cross-validation 
and testing folds. d Artificial absence points derived from lakes or regions where the annual mean temperature is below 4◦C , separated according 
to the biogeographical regions in c 
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package dismo [50], resulting in a total of 84,000 back-
ground points.

Environmental variables
Environmental variables are measurements obtained 
through methods such as remote sensing, climate 
monitoring stations, or field studies, and are used to 
describe and analyze various aspects and conditions of 

an environment. These variables are shown as grid cells, 
where each cell contains a value for a specific environ-
mental characteristic. In the context of modeling tick 
attachment to humans, a comprehensive set of envi-
ronmental variables was employed, covering variables 
produced for local (Switzerland), regional (Europe), and 
global scales. In modeling tick attachment to humans, 
environmental variables were selected based on their 
possible impact on tick occurrence, and human activ-
ity. Garcia-Martí et  al. [51] described in their study the 
importance of weather data, vegetation data from sat-
ellites, and land-cover data for mapping tick dynam-
ics. Building on this approach, we extended the set of 
environmental variables by incorporating variables that 
reflect human behavior in space, such as population den-
sity. The variables were acquired across diverse tempo-
ral scales, including monthly, yearly, seasonal (distinct 
datasets for spring, summer, autumn, and winter), and 
static variables. The variables used in this study (Table 1) 
fall into one of the following categories: land-cover data, 
population data, weather data, vegetation indices, terrain 
data, and roe deer data.

Vegetation indices can be useful when mapping ticks 
[51]. Therefore, we used three spectral vegetation indices 
to capture spectral vegetation properties: the enhanced 
vegetation index (EVI) [52], which ranges from −1 (bare 
soil) to +1 (dense vegetation), the leaf area index (LAI) 
[53], which measures leaf area per ground area, and the 

Fig. 3 Tick Prevention app. a Main menu of the app in German. Here users can find information on how to protect themselves from tick bites, 
where ticks can be found, and what to do if they have been bitten by a tick. b, c The setting in which the user can enter where they were bitten 
by a tick. Users can specify the precision of the location, ranging from very imprecise, e.g., in Bern (b), to very precise, e.g., on this specific field path 
(c). d The functionality of the app where users can record the specific location on the body where they were bitten

Fig. 4 Entries in the Tick Prevention app over time. The y-axis 
indicates the number of entries per day, and the x-axis represents 
the time
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green chlorophyll index (GCI) [54], which estimates 
chlorophyll content in vegetation.

Furthermore, land cover influences the likelihood of 
tick–host encounters (e.g., with deer, humans, or mice) 
and can thus serve as a critical factor affecting tick occur-
rence [51]. Consequently, we incorporated multiple land-
cover datasets, including CORINE (Coordination of 
Information on the Environment) land-cover data, Swiss 
land-cover data, Swiss forest composition, global for-
est cover fraction, and global cropland distribution (see 
Table 1).

The population data used in this study include Swiss 
population data, worldwide population data, human foot-
print data, and global travel time to cities. These datasets 
were selected to capture human presence and activity, 
which could influence tick attachment to humans. The 
population data provide population densities, the human 
footprint data reflect areas of high human activity, and 
global travel time to cities reflects accessibility, which 
affects human movement in space.

Weather data were also incorporated, as weather con-
ditions can influence tick behavior by determining the 
onset of the questing season or affecting survival during 
winter [51]. The weather data used in this study include 
annual snow cover, monthly precipitation, monthly rela-
tive sunshine duration, and monthly mean temperature 
(see Table 1).

We also included terrain data, specifically a digital 
height model, which provides information on terrain 
height for all of Switzerland. The roe deer data [55] pro-
vide the distribution of roe deer across Europe and were 
incorporated due to the deer’s role as a host for ticks [56].

To ensure consistency, all environmental variables were 
resampled to a uniform spatial resolution of 100 m. Fur-
ther details on the native resolution, data sources, their 
temporal resolution, and other relevant information for 
the environmental variables are provided in Table 1.

Absence points
A variety of metrics are available to assess the perfor-
mance of a species distribution model. However, many 
of these metrics, such as the area under the receiver 
operating characteristic curve ( AUCROC [57]), cannot 
be calculated on the presence points of a species alone. 
In addition to the presence points, information indicat-
ing the absence of a species is needed. Absence points 
were generated artificially in this study for model testing. 
It is known that ticks do not survive in areas where the 
average annual temperature is below 4◦C ; therefore, the 
mean monthly temperature variables were averaged to 
yearly data. From these data, areas warmer than 4◦C were 

masked, and 10,000 absence points were randomly sam-
pled for each year using the randomPoints() function 
from the R package dismo [50]. Furthermore, ticks can-
not survive in water; therefore, on the lakes in the study 
area, 30,000 absence points were sampled using the same 
function. These absence points were used solely for cal-
culating evaluation metrics (see Section "Evaluation" ), as 
spatialMaxent effectively handles PO data. By modeling 
on PO data, we developed a model solely on citizen sci-
ence data, which may be of interest for similar citizen sci-
ence projects. This approach also allowed tick experts in 
Switzerland to conduct an initial assessment of the model 
without introducing the uncertainty associated with arti-
ficial absence points.

Evaluation
For evaluating the performance of a species distribution 
model, Konowalik and Nosol [58] advised incorporating 
expert opinion along with multiple performance metrics. 
Two experts for ticks in Switzerland were therefore con-
sulted to assess the maps. Furthermore, several evalua-
tion metrics were calculated using forward-fold-metric 
estimation (FFME) [33], which is a form of nested cross-
validation [59]. In FFME, not one but two test folds, spa-
tially and temporally independent of each other, were 
separated from the training data as test data. A model 
was trained using the remaining training data and evalu-
ated using the two folds removed from the training data 
for model testing. This procedure was repeated for all 
possible combinations of two test folds, using 10 different 
combinations in this study.

Since individual metrics often come with uncertain-
ties [58, 60], a variety of metrics were utilized to obtain 
a comprehensive assessment of the model’s performance. 
For metrics requiring absence data, the same number of 
artificial absence points (Fig. 2c) as presence points in the 
test data were sampled. The metrics AUCROC , true skill 
statistic (TSS) [61], and percent correctly classified (PCC) 
were calculated using the evalSDM() function from the 
R package mecofun (version 0.1.1) [62]. Additionally, the 
area under the precision-recall-gain curve ( AUCPRG ) [63] 
was calculated using the R package prg (version 0.5.1) 
[64], and the continuous Boyce index (CBI) [65] using the 
R package ecospat (version 3.5) [66]. The metrics mean 
absolute error (MAE), root mean square error (RMSE), 
and mean log loss (logloss) were calculated using the R 
package Metrics (version 0.1.4) [67]. Furthermore, a 
Pearson correlation (COR) between observed test data 
and mapped values was computed using the base R func-
tion cor().
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Results
Selected model parameters
Model tuning revealed that the optimal model param-
eters were a beta multiplier of 6.5 and the use of the lin-
ear feature transformation. Five important variables were 
selected during the variable selection process: monthly 
mean temperature, CORINE land-cover class, Swiss for-
est composition, Swiss land-cover, and Swiss population 
data (Fig. 5). The most important variables were monthly 
mean temperature and CORINE land-cover, which con-
tributed 55.7% and 38.5% to the model, respectively. The 
remaining variables initially considered (Table  1) were 
excluded from the final model, as they did not enhance 
model performance based on the algorithmic variable 
selection process (see Section "Modeling approach"). This 
exclusion ensured that only variables with high perfor-
mance were retained, preventing overfitting of the model.

Assessment of model performance
To assess the model performance on the test data, the met-
rics were analyzed separately by years and months. The 
differences in the metrics between individual years (Fig. 6) 
were not as high as those between the different months 
(Fig.  7). However, the metrics AUCROC , AUCPRG , PCC, 
and TSS performed slightly lower for the years 2018 to 2020 
(Fig. 6; Appendix A), while the results for the year 2017 were 
somewhat higher than for other years, with the exception 
of CBI (0.62; Appendix A). The second-best results were 
achieved for the year 2021, which attained the second-best 

scores for the metrics AUCROC (0.92), TSS (0.75), AUCPRG 
(0.86), COR (0.59), and CBI (0.69; Fig. 6; Appendix A).

When analyzing the results over multiple months, the 
variability between individual months was greater than 
the variability between years (Fig.  7). In particular, the 
winter months showed good results, during which low 
tick activity can be expected (January, February, and 
December). These months achieved the highest score of 1 
for the metrics AUCROC , TSS, PCC, and AUCPRG (Fig. 7; 
Appendix A). Good results were also achieved for COR 
(January 1, February 0.84, December 0.78; Appendix A), 
while poorer values were obtained for the metrics MAE, 
RMSE, and logloss. Some of the results contrasted with 
each other. For example, March had very good values for 
the metrics AUCROC (1), TSS (1), PCC (1), AUCPRG (1), 
COR (0.66), and CBI (0.68), while it ranked in the mid-
dle for MAE (0.42) and obtained one of the worst ranks 
for RMSE (0.6) and logloss (1.04) compared to the other 
months (Fig. 7; Appendix A). In comparison to the other 
months, May, June, and August exhibited the weakest 
performance. The metrics AUCROC , TSS, AUCPRG , and 
COR had the lowest overall performance values during 
these months (Fig. 7; Appendix A).

Time series maps and overall risk
A total of 84 maps depicting the risk of tick attachment to 
humans in Switzerland were generated in this study. All 
maps from 2015 to 2021 are accessible as a time series in 
the supplementary information, while the maps for 2015 
are shown as examples in Fig. 8b.

The risk of tick attachment to humans for most years 
from 2015 to 2021 increased from April onwards, 
expanding to more regions and peaking in July (see time 
series in supplementary information). During this peak, a 
large part of the populated Switzerland experienced high 
risk, which then declined, with only a few regions main-
taining high risk by September. Analysis of the overall 
risk over the entire period from January 2015 to Decem-
ber 2021, based on the summed risk values, reveals that 
tick attachment to humans is particularly high at the 
edges of settlement areas (Fig.  8a). In particular, tick 
attachment rates are notably higher in sparsely built-up 
suburban areas with green spaces, whereas they are lower 
in urban areas. Additionally, forested areas adjacent to 
cities also exhibit heightened risk levels (Fig. 9).

Discussion
In this study, the risk of tick attachment to humans in 
Switzerland was mapped at a spatial resolution of 100 m 
on a monthly basis from 2015 to 2021. A comprehensive 
dataset collected by a citizen science approach through 
the Tick Prevention app of Switzerland was utilized to 
create the maps.

Fig. 5 Variable importance of the selected variables. The barplot 
displays the variables selected as important through the automatic 
variable selection procedure. The y-axis shows the variables, 
while the x-axis indicates the percentage contribution of each 
variable to the model
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The time series of monthly maps revealed higher risk in 
suburban areas with green spaces and adjacent forested 
regions, consistent with previous findings, suggesting 
that urban and suburban areas can harbor high tick pop-
ulations [68–70]. Furthermore, Oechslin et al. [10] dem-
onstrated that ticks found in urban and suburban regions 
of Switzerland exhibit carrier rates of tick-borne diseases 
comparable to those in rural regions. This suggests that 
the urban and suburban areas identified as high risk for 
tick attachment to humans in our study may warrant 
increased attention for public health management.

The maps for the months of May and June display 
lower metric scores compared to other months across all 
years (Fig. 7). Given that tick activity typically begins in 
early spring [71], the low risk depicted in these months 

suggests a potential underestimation of the risk. For 
example, compared to July of most years, we observe 
lower risk levels during these two months (e.g., as seen 
for 2015 in Fig.  8b). However, an examination of Lyme 
disease cases on the Infectious Diseases Dashboard of 
the Swiss Federal Office of Public Health (FOPH; https:// 
www. idd. bag. admin. ch/ disea ses/ lyme/ stati stic; count for 
the years 2015 to 2021; accessed on 30.08.2024) reveals 
that there is no consistent pattern regarding which 
month has the highest number of reported cases in Swit-
zerland. In 2021 and 2022, the highest number of cases 
was reported in June, whereas in 2015, 2020, and 2023, 
the peak occurred in July. This indicates a shift from the 
typical pattern of two distinct peaks in June and Sep-
tember, observed in previous decades, to a more diffuse 

Fig. 6 Test results by year. The boxplots depict the test results on the test folds, stratified by year, across nine evaluation metrics: area 
under the receiver operating characteristic curve ( AUCROC ), area under the precision-recall-gain curve ( AUCPRG ), percent correctly classified 
(PCC), true skill statistic (TSS), continuous Boyce index (CBI), Pearson correlation (COR), mean absolute error (MAE), root mean square error (RMSE), 
and mean log loss (logloss). The x-axis represents the year, while the y-axis indicates the metric

https://www.idd.bag.admin.ch/diseases/lyme/statistic
https://www.idd.bag.admin.ch/diseases/lyme/statistic
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pattern. Considering these changes, the lower metric val-
ues observed in May and June could be due to shifting 
tick activity patterns or complexities that the model may 
struggle to capture, warranting further investigation to 
improve predictive accuracy. Additionally, it is important 
to note that the results presented here are specific to the 
modeling strategy used in this study, as the variable selec-
tion, validation strategy, and modeling method can have 
a substantial impact on the model outcomes [37, 38, 72].

Furthermore, the citizen science approach, while valu-
able for collecting such a large dataset on tick attach-
ment to humans, also has its limitations. The quality of 

the data relies heavily on the users of the app [21], and 
more detailed information, such as the identification of 
tick species or the potential transmission of tick-borne 
diseases, could not be acquired. Moreover, it does not 
include absence points, which led us to create artificial 
absence points. This approach may limit the reliability of 
the calculated evaluation metrics and, consequently, the 
model’s assessment. For example, the use of temperature 
thresholds to create artificial absence points may over-
look microclimatic variations where ticks can survive, 
potentially affecting the accuracy of the evaluation met-
rics. However, after discussions with the tick experts on 

Fig. 7 Test results by month. The boxplots depict the results on test folds, stratified by month, across nine evaluation metrics: area 
under the receiver operating characteristic curve ( AUCROC ), area under the precision-recall-gain curve ( AUCPRG ), percent correctly classified 
(PCC), true skill statistic (TSS), continuous Boyce index (CBI), Pearson correlation (COR), mean absolute error (MAE), root mean square error (RMSE), 
and mean log loss (logloss). The x-axis represents the month, while the y-axis indicates the evaluation metric
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Fig. 8 Maps depicting the risk of tick attachment to humans in Switzerland. a The overall risk of tick attachment to humans across Switzerland, 
derived from the sum of all 84 monthly maps from 2015 to 2021. The scale ranges from 0 (indicating low overall risk for the entire period) to 70 
(indicating high overall risk for the entire period). b The monthly risk of tick attachment for the year 2015, selected as an example. The complete set 
of monthly maps for all years is available as time series in the supplementary information. The scale ranges from 0 (low risk) to 1 (high risk)
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our author team, we opted for this simple yet pragmatic 
approach, acknowledging that temperature serves as a 
suitable proxy for distribution limitations in the predom-
inantly terrain-dominated landscape of Switzerland.

Our study highlighted the high importance of the vari-
ables monthly mean temperature, CORINE land-cover 
, Swiss forest composition, Swiss land-cover, and Swiss 
population data for modeling tick attachment to humans. 
This indicates a clear preference of the model for regional 
datasets over more generalized, globally available ones. 
The selected variables align with many variables men-
tioned in the literature that are pertinent to tick occur-
rence; for example, the dependence on temperature is 
mentioned frequently [71, 73–75]. The preference of ticks 
for specific forest types has also been observed [76–78]. 
The importance of the land-cover variables is probably 
not only due to tick distribution but also if areas are fre-
quently visited by humans, such as for recreational pur-
poses [79]. For example, Salkeld et  al. [16] investigated 
human exposure to ticks and found that outdoor rec-
reation significantly affects human exposure in the USA. 
The variable monthly mean temperature is the most 
important dynamic variable in the model; therefore, the 
changes across the maps (see supplementary informa-
tion) are driven largely by weather conditions. While this 
captures a seasonal impact of tick attachment to humans, 
the static nature of the other variables limits the model’s 
ability to reflect temporal changes, such as shifts in land 
use; these limitations should be considered when inter-
preting the maps. In this regard, a fine-grained time 
series of land-cover changes could be beneficial.

Rochat et  al. [75] mapped the distribution of Ixodes 
ricinus in Switzerland for June 2009 and June 2018. The 
spatial distribution of I. ricinus in their June 2018 map 
closely aligns with the risk of tick attachment to humans 
that we mapped for the same month. Although this con-
gruence suggests a linkage between tick habitat suitability 
and the observed tick attachment risk, we would empha-
size here that we modeled tick attachment to humans and 
not the habitat suitability for ticks. However, this connec-
tion suggests a correlation between tick habitat suitability 
and tick attachment to humans which was also observed 
by Ribeiro et al. [78].

Following this study, it would be beneficial to predict 
the risk of tick attachment to humans in Switzerland 
using future climate data. Such predictions could pro-
vide timely warnings to the population, potentially sev-
eral months before the actual risk arises, allowing for 
preventive public health responses. Additionally, long-
term predictions, incorporating diverse climate change 
scenarios (e.g., using CHELSEA data [80]) could enable 
more robust and extended planning for the healthcare 
system. It could also be beneficial to extend the use of 
the Tick Prevention app to other countries facing simi-
lar challenges. Furthermore, the app could be enhanced 
to collect more detailed data by enabling users to submit 
tick images for species classification [81, 82] or by facili-
tating the submission of ticks to research laboratories for 
in-depth analysis [83].

Our study offers insights into the spatial and tem-
poral dynamics of tick attachment to humans in Swit-
zerland by leveraging citizen science data alongside a 

Fig. 9 The overall risk of tick attachment to humans in Zürich. On the left, an OpenStreetMap map of the Zürich region is shown. On the right, 
the overall risk of tick attachment to humans is depicted, with yellow and red colors indicating high overall risk, while green colors represent low 
risk. Data: Federal Office of Topography Swisstopo [84]
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state-of-the-art modeling approach. While the results 
must be interpreted with caution due to the uncertainties 
of the citizen science data and the potential limitations 
of evaluation metrics calculated with artificial absence 
points, as well as the influence of modeling strategies 
on the outcomes, these maps represent the first high-
resolution depiction of tick attachment to humans in 
Switzerland. They can serve as a foundation for future 
research aimed at informing targeted interventions and 
public health strategies to reduce the incidence of tick-
borne illnesses in the country. Our work also highlights 
the potential value of citizen science in epidemiological 
surveillance. To translate these insights into actionable 
outcomes, it is crucial to further strengthen collabora-
tion among public health authorities, researchers, and 
the public.

Appendix A
See Tables 2 and 3.

Abbreviations
TBE  Tick-borne encephalitis
SDM  Species distribution modeling
PA  Presence–absence
PO  Presence-only
EVI  Enhanced vegetation index
AUCROC  Area under the receiver operating characteristic curve
FFME  Forward-fold-metric-estimation
TSS  True skill statistic
PCC  Percent correctly classified
AUCPRG  Area under the precision-recall-gain curve
CBI  Continuous Boyce index
MAE  Mean absolute error
RMSE  Root mean square error
COR  Pearson correlation
FOPH  Swiss Federal Office of Public Health
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Table 2 Summary of model testing results aggregated by year

The table displays median results from model testing across various test folds (see Section "Evaluation") for the years 2015 to 2021. The analysis included the following 
metrics: area under the receiver operating characteristic curve ( AUCROC ), area under the precision-recall-gain curve ( AUCPRG ), percent correctly classified (PCC), true 
skill statistic (TSS), continuous Boyce index (CBI), Pearson correlation (COR), mean absolute error (MAE), root mean square error (RMSE), and log loss (logloss). Values 
rounded to two decimal digits

Year AUCROC AUCPRG PCC TSS CBI COR MAE logloss RMSE

2015 0.89 0.84 0.88 0.75 0.62 0.58 0.41 0.78 0.53

2016 0.9 0.83 0.83 0.67 0.65 0.59 0.43 0.85 0.56

2017 0.92 0.89 0.89 0.78 0.62 0.68 0.37 0.65 0.49

2018 0.82 0.64 0.81 0.62 0.69 0.55 0.42 0.67 0.5

2019 0.83 0.68 0.82 0.65 0.66 0.56 0.41 0.82 0.53

2020 0.86 0.76 0.82 0.64 0.72 0.55 0.41 0.74 0.52

2021 0.92 0.86 0.87 0.75 0.69 0.59 0.43 0.84 0.56

Table 3 Summary of model testing results aggregated by month

The table displays median results from model testing across various test folds (see Section "Evaluation") for all 12 months. The analysis included the following 
metrics: area under the receiver operating characteristic curve ( AUCROC ), area under the precision-recall-gain curve ( AUCPRG ), percent correctly classified (PCC), true 
skill statistic (TSS), continuous Boyce index (CBI), Pearson correlation (COR), mean absolute error (MAE), root mean square error (RMSE), and log loss (logloss). Values 
rounded to two decimal digits

Month AUCROC AUCPRG PCC TSS CBI COR MAE logloss RMSE

1 1 1 1 1 0.6 1 0.47 1.23 0.65

2 1 1 1 1 0.62 0.84 0.42 0.86 0.57

3 1 1 1 1 0.68 0.66 0.42 1.04 0.6

4 0.95 0.92 0.92 0.84 0.62 0.63 0.4 0.83 0.54

5 0.73 0.5 0.79 0.57 0.83 0.3 0.44 0.69 0.49

6 0.74 0.53 0.78 0.56 0.64 0.19 0.46 0.92 0.58

7 0.93 0.91 0.9 0.79 0.59 0.71 0.28 0.42 0.38

8 0.75 0.42 0.75 0.5 0.5 0.51 0.37 0.6 0.45

9 0.96 0.95 0.94 0.88 0.82 0.8 0.29 0.43 0.37

10 1 1 0.94 0.88 0.66 0.71 0.39 0.77 0.53

11 0.92 0.89 0.88 0.75 0.7 0.61 0.43 0.97 0.58

12 1 1 1 1 0.73 0.78 0.43 0.99 0.59

https://doi.org/10.1186/s13071-024-06636-4
https://doi.org/10.1186/s13071-024-06636-4


Page 15 of 17Bald et al. Parasites & Vectors           (2025) 18:22  

Acknowledgements
We express our gratitude to all users of the Tick Prevention app, whose partici-
pation made this work possible.

Author contributions
 NR and LB prepared the data. LB developed the models with input from all 
coauthors. DZ, PL, and TH advised on the data preparation and modeling 
workflow. WT and JG were responsible for the Tick Prevention app, provided 
the data, and reviewed the final maps for plausibility. NB provided advice on 
medical mapping. LB wrote the original manuscript. All authors contributed 
to drafting and revising the final manuscript, and approved the manuscript for 
publication.

Funding
Open Access funding enabled and organized by Projekt DEAL. LB is funded 
by the Tree-M project, which is financed by the Hessian State Offensive for 
the Development of Scientific-economic Excellence (LOEWE). This work has 
received funding from the European Union’s Horizon 2020 research and inno-
vation programme under Grant Agreement MOOD No. 874850.

Availability of data and materials
All code used for data processing and to create the models used for map-
ping tick attachment to humans is publicly available at: https:// github. com/ 
envima/ TickA ttach mentS witze rland 2024.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Faculty of Geography, Environmental Informatics, University of Marburg, 
Deutschhausstraße 12, 35032 Marburg, Hessen, Germany. 2 Institute of Natural 
Resource Sciences, Zurich University of Applied Sciences ZHAW, Grüental-
strasse 14, 8820 Wädenswil, Zürich, Switzerland. 3 OpenGeoHub Foundation, 
Cardanuslaan 26, 6865HK Doorwerth, The Netherlands. 4 A&K Strategy Ltd., 
Smartphone application “Tick Prevention”, Chastelstrasse 14, 8732 Neuhaus, 
Zürich, Switzerland. 

Received: 14 October 2024   Accepted: 16 December 2024

References
 1. Fuente JDL. Overview: ticks as vectors of pathogens that cause disease in 

humans and animals. Front Biosci. 2008;13:6938–46. https:// doi. org/ 10. 
2741/ 3200.

 2. Durden LA. Taxonomy, host associations, life cycles and vectorial 
importance of ticks parasitizing small mammals. In: Morand S, Krasnov 
BR, Poulin R, editors. Micromammals and macroparasites. Tokyo: Springer 
Japan; 2006. p. 91–102.

 3. Gern L, Humair PF. Ecology of Borrelia burgdorferi sensu lato in Europe. 
In: Gray J, Kahl O, Lane RS, Stanek G, editors. Lyme borreliosis: biology, 
epidemiology and control. UK: CABI Publishing; 2002. p. 149–74.

 4. Pfäffle M, Littwin N, Muders SV, Petney TN. The ecology of tick-borne 
diseases. Int J Parasitol. 2013;43:1059–77. https:// doi. org/ 10. 1016/j. ijpara. 
2013. 06. 009.

 5. Bacon RM, Kugeler KJ, Mead PS. Surveillance for Lyme disease—United 
States, 2008;1992–2006. Available from: https:// www. cdc. gov/ mmwr/ 
previ ew/ mmwrh Tml/ ss571 0a1. htm.

 6. Gratz NG. The vector–borne human infections of Europe: their distribu-
tion and burden on public health. World Health Organization. Regional 
Office for Europe: Publisher; 2004.

 7. Lindquist L, Vapalahti O. Tick-borne encephalitis. Lancet. 2008;371:1861–
71. https:// doi. org/ 10. 1016/ S0140- 6736(08) 60800-4.

 8. Rizzoli A, Hauffe HC, Carpi G, Vourc’h GI, Neteler M, Rosà R. Lyme borre-
liosis in Europe. Eurosurveillance. 2011;16:19906. https:// doi. org/ 10. 2807/ 
ese. 16. 27. 19906- en.

 9. Hubálek Z. Epidemiology of Lyme borreliosis. In: Lipsker D, Jaulhac B, 
editors. Lyme borreliosis: biological and clinical aspects. Switzerland: S. 
Karger AG; 2009. p. 31–50.

 10. Oechslin CP, Heutschi D, Lenz N, Tischhauser W, Peter O, Rais O, et al. 
Prevalence of tick-borne pathogens in questing Ixodes ricinus ticks in 
urban and suburban areas of Switzerland. Parasit Vectors. 2017;10:558. 
https:// doi. org/ 10. 1186/ s13071- 017- 2500-2.

 11. Madison-Antenucci S, Kramer LD, Gebhardt LL, Elizabeth B, Kauffman 
EB. Emerging tick-borne diseases. Clin Microbiol Rev. 2020;33:e0083-18. 
https:// doi. org/ 10. 1128/ cmr. 00083- 18.

 12. Panatto D, Domnich A, Amicizia D, Reggio P, Iantomasi R. Vaccination 
against tick-borne encephalitis (TBE) in Italy: still a long way to go. Micro-
organisms. 2022;10:464. https:// doi. org/ 10. 3390/ micro organ isms1 00204 
64.

 13. Šmit R. Cost-effectiveness of tick-borne encephalitis vaccination in 
Slovenian adults. Vaccine. 2012;30:6301–6. https:// doi. org/ 10. 1016/j. vacci 
ne. 2012. 07. 083.

 14. Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Peña A, 
George JC, et al. Driving forces for changes in geographical distribution 
of Ixodes ricinus ticks in Europe. Parasit Vectors. 2013;6:1–11. https:// doi. 
org/ 10. 1186/ 1756- 3305-6-1.

 15. Semenza JC, Rocklöv J, Ebi KL. Climate change and cascading risks from 
infectious disease. Infect Dis Ther. 2022;11:1371–90. https:// doi. org/ 10. 
1007/ s40121- 022- 00647-3.

 16. Salkeld DJ, Porter WT, Loh SM, Nieto NC. Time of year and outdoor recrea-
tion affect human exposure to ticks in California, United States. Ticks Tick 
Borne Dis. 2019;10:1113–7. https:// doi. org/ 10. 1016/j. ttbdis. 2019. 06. 004.

 17. Mulder S, Van Vliet AJH, Bron WA, Gassner F, Takken W. High risk of tick 
bites in Dutch gardens. Vector Borne Zoonotic Dis. 2013;13:865–71. 
https:// doi. org/ 10. 1089/ vbz. 2012. 1194.

 18. Arsevska E, Hengl T, Singleton DA, Noble PJM, Caminade C, Eneanya 
OA, et al. Risk factors for tick attachment in companion animals in 
Great Britain: a spatiotemporal analysis covering 2014–2021. Parasit 
Vectors. 2024;17:1–19. https:// doi. org/ 10. 1186/ s13071- 023- 06094-4.

 19. Kopsco HL, Smith RL, Halsey SJ. A scoping review of species distribu-
tion modeling methods for tick vectors. Front Ecol Evol. 2022;10:1–22. 
https:// doi. org/ 10. 3389/ fevo. 2022. 893016.

 20. Rubel F, Brugger K. Tick-borne encephalitis incidence forecasts for Aus-
tria, Germany, and Switzerland. Ticks Tick Borne Dis. 2020;11:101437. 
https:// doi. org/ 10. 1016/j. ttbdis. 2020. 101437.

 21. Fraisl D, Hager G, Bedessem B, Gold M, Hsing PY, Danielsen F, et al. Citi-
zen science in environmental and ecological sciences. Nat Rev Meth-
ods Primers. 2022;2:1–20. https:// doi. org/ 10. 1038/ s43586- 022- 00144-4.

 22. Tischhauser W, Grunder J. A smartphone app against ticks. swiTT—
Swiss Technology Transfer Association; 2015.

 23. Guisan A, Thuiller W. Predicting species distribution: offering more than 
simple habitat models. Ecol Lett. 2005;8:993–1009. https:// doi. org/ 10. 
1111/j. 1461- 0248. 2005. 00792.x.

 24. Lee-Yaw JA, McCune JL, Pironon S, Sheth SN. Species distribution 
models rarely predict the biology of real populations. Ecography. 
2022;2022:e05877. https:// doi. org/ 10. 1111/ ecog. 05877.

 25. Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera-Arroita G, et al. 
Cross-validation strategies for data with temporal, spatial, hierarchical, or 
phylogenetic structure. Ecography. 2017;40:913–29. https:// doi. org/ 10. 
1111/ ecog. 02881.

 26. Ploton P, Mortier F, Réjou-Méchain M, Barbier N, Picard N, Rossi V, et al. 
Spatial validation reveals poor predictive performance of large-scale 
ecological mapping models. Nat Commun. 2020;11:4540. https:// doi. org/ 
10. 1038/ s41467- 020- 18321-y.

 27. Meyer H, Reudenbach C, Wöllauer S, Nauss T. Importance of spatial pre-
dictor variable selection in machine learning applications—moving from 

https://github.com/envima/TickAttachmentSwitzerland2024
https://github.com/envima/TickAttachmentSwitzerland2024
https://doi.org/10.2741/3200
https://doi.org/10.2741/3200
https://doi.org/10.1016/j.ijpara.2013.06.009
https://doi.org/10.1016/j.ijpara.2013.06.009
https://www.cdc.gov/mmwr/preview/mmwrhTml/ss5710a1.htm
https://www.cdc.gov/mmwr/preview/mmwrhTml/ss5710a1.htm
https://doi.org/10.1016/S0140-6736(08)60800-4
https://doi.org/10.2807/ese.16.27.19906-en
https://doi.org/10.2807/ese.16.27.19906-en
https://doi.org/10.1186/s13071-017-2500-2
https://doi.org/10.1128/cmr.00083-18
https://doi.org/10.3390/microorganisms10020464
https://doi.org/10.3390/microorganisms10020464
https://doi.org/10.1016/j.vaccine.2012.07.083
https://doi.org/10.1016/j.vaccine.2012.07.083
https://doi.org/10.1186/1756-3305-6-1
https://doi.org/10.1186/1756-3305-6-1
https://doi.org/10.1007/s40121-022-00647-3
https://doi.org/10.1007/s40121-022-00647-3
https://doi.org/10.1016/j.ttbdis.2019.06.004
https://doi.org/10.1089/vbz.2012.1194
https://doi.org/10.1186/s13071-023-06094-4
https://doi.org/10.3389/fevo.2022.893016
https://doi.org/10.1016/j.ttbdis.2020.101437
https://doi.org/10.1038/s43586-022-00144-4
https://doi.org/10.1111/j.1461-0248.2005.00792.x
https://doi.org/10.1111/j.1461-0248.2005.00792.x
https://doi.org/10.1111/ecog.05877
https://doi.org/10.1111/ecog.02881
https://doi.org/10.1111/ecog.02881
https://doi.org/10.1038/s41467-020-18321-y
https://doi.org/10.1038/s41467-020-18321-y


Page 16 of 17Bald et al. Parasites & Vectors           (2025) 18:22 

data reproduction to spatial prediction. Ecol Model. 2019;411:108815. 
https:// doi. org/ 10. 1016/j. ecolm odel. 2019. 108815.

 28. Meyer H, Reudenbach C, Hengl T, Katurji M, Nauss T. Improving per-
formance of spatio-temporal machine learning models using forward 
feature selection and target-oriented validation. Environ Model Softw. 
2018;101:1–9. https:// doi. org/ 10. 1016/j. envso ft. 2017. 12. 001.

 29. Pebesma E. Simple features for R: standardized support for spatial vector 
data. R J. 2018;10:439–46. https:// doi. org/ 10. 32614/ RJ- 2018- 009.

 30. Pebesma E, Bivand R. Spatial data science: with applications in R. 1st ed. 
New York: Chapman and Hall/CRC; 2023.

 31. Hijmans RJ. raster: geographic data analysis and modeling. R package 
version 3.6-20. 2023. Available from: https:// CRAN.R- proje ct. org/ packa 
ge= raster.

 32. Hijmans RJ. terra: spatial data analysis. R package version 1.7-29. 2023. 
Available from: https:// CRAN.R- proje ct. org/ packa ge= terra.

 33. Bald L, Gottwald J, Zeuss D. spatialMaxent: adapting species distribution 
modeling to spatial data. Ecol Evol. 2023;13:e10635. https:// doi. org/ 10. 
1002/ ece3. 10635.

 34. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of spe-
cies geographic distributions. Ecol Model. 2006;190:231–59. https:// doi. 
org/ 10. 1016/j. ecolm odel. 2005. 03. 026.

 35. R Core Team. R: a language and environment for statistical computing. 
R Foundation for Statistical Computing. 2024. Available from: https:// 
www.R- proje ct. org/.

 36. Guillera-Arroita G, Lahoz-Monfort JJ, Elith J. Maxent is not a pres-
ence–absence method: a comment on Thibaud. Methods Ecol Evol. 
2014;5:1192–7. https:// doi. org/ 10. 1111/ 2041- 210X. 12252.

 37. Valavi R, Guillera-Arroita G, Lahoz-Monfort JJ, Elith J. Predictive perfor-
mance of presence-only species distribution models: a benchmark study 
with reproducible code. Ecol Monogr. 2022;92:e01486. https:// doi. org/ 10. 
1002/ ecm. 1486.

 38. Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G. Flexible species dis-
tribution modelling methods perform well on spatially separated testing 
data. Global Ecol Biogeogr. 2023;32:369–83. https:// doi. org/ 10. 1111/ geb. 
13639.

 39. Morales NS, Fernández IC, Baca-González V. MaxEnt’s parameter configu-
ration and small samples: are we paying attention to recommendations? 
A systematic review. PeerJ. 2017;5:e3093. https:// doi. org/ 10. 7717/ peerj. 
3093.

 40. Guillera-Arroita G, Lahoz-Monfort JJ, Elith J, Gordon A, Kujala H, Lentini PE, 
et al. Is my species distribution model fit for purpose? Matching data and 
models to applications: matching distribution models to applications. 
Glob Ecol Biogeogr. 2015;24:276–92. https:// doi. org/ 10. 1111/ geb. 12268.

 41. Yiwen Z, Wei LB, Yeo DCJ. Novel methods to select environmental 
variables in MaxEnt: a case study using invasive crayfish. Ecol Model. 
2016;341:5–13. https:// doi. org/ 10. 1016/j. ecolm odel. 2016. 09. 019.

 42. Elith J, Graham C, Valavi R, Abegg M, Bruce C, Ford A, et al. Presence-only 
and presence-absence data for comparing species distribution modeling 
methods. Biodiv Inf. 2020;15:69–80. https:// doi. org/ 10. 17161/ bi. v15i2. 
13384.

 43. Gonzalez SC, Soto-Centeno JA, Reed DL. Population distribution models: 
species distributions are better modeled using biologically relevant 
data partitions. BMC Ecol. 2011;11:1–10. https:// doi. org/ 10. 1186/ 
1472- 6785- 11- 20.

 44. Schweizerische Eidgenossenschaft.: about Switzerland. Geografie - Fakten 
und Zahlen. 2024. Available from: https:// www. eda. admin. ch/ about switz 
erland/ de/ home/ umwelt/ geogr afie/ geogr afie--- fakten- und- zahlen. html.

 45. Schweizerische Eidgenossenschaft.: about Switzerland. Die Bevölkerung 
- Fakten und Zahlen. 2024. Available from: https:// www. eda. admin. ch/ 
about switz erland/ de/ home/ gesel lscha ft/ bevoe lkeru ng/ die- bevoe lkeru 
ng--- fakten- und- zahlen. html.

 46. Stegmüller S, Qi W, Torgerson PR, Fraefel C, Kubacki J. Hazard potential of 
Swiss Ixodes ricinus ticks: virome composition and presence of selected 
bacterial and protozoan pathogens. PLoS ONE. 2023;18:e0290942. 
https:// doi. org/ 10. 1371/ journ al. pone. 02909 42.

 47. Gäumann R. Molecular epidemiology of tick-borne encephalitis viruses 
in Switzerland. 2010. Available from: https:// www. parcs. ch/ nwp/ pdf_ 
public/ 2014/ 26279_ 20140 130_ 124951_ Gaeum ann_ PhD_ Thesi s2010. pdf.

 48. Renner IW, Elith J, Baddeley A, Fithian W, Hastie T, Phillips SJ, et al. 
Point process models for presence-only analysis. Methods Ecol Evol. 
2015;6:366–79. https:// doi. org/ 10. 1111/ 2041- 210X. 12352.

 49. Warton DI, Shepherd LC. Poisson point process models solve the 
“pseudo-absence problem’’ for presence-only data in ecology. Ann Appl 
Stat. 2010;4:1383–402. https:// doi. org/ 10. 1214/ 10- AOAS3 31.

 50. Hijmans RJ, Phillips S, Leathwick J, Elith J. dismo: species distribution 
modeling. R package version 1.3-14. 2023. Available from: https:// CRAN.R- 
proje ct. org/ packa ge= dismo.

 51. Garcia-Martí I, Zurita-Milla R, Van Vliet AJH, Takken W. Modelling and map-
ping tick dynamics using volunteered observations. Int J Health Geogr. 
2017;16:1–15. https:// doi. org/ 10. 1186/ s12942- 017- 0114-8.

 52. Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. Overview of 
the radiometric and biophysical performance of the MODIS vegetation 
indices. Remote Sens Environ. 2002;83:195–213. https:// doi. org/ 10. 1016/ 
S0034- 4257(02) 00096-2.

 53. Boegh E, Soegaard H, Broge N, Hasager CB, Jensen NO, Schelde K, et al. 
Airborne multispectral data for quantifying leaf area index, nitrogen 
concentration, and photosynthetic efficiency in agriculture. Remote Sens 
Environ. 2002;81:179–93. https:// doi. org/ 10. 1016/ S0034- 4257(01) 00342-X.

 54. Gitelson AA, Viña A, Arkebauer TJ, Rundquist DC, Keydan G, Leavitt B. 
Remote estimation of leaf area index and green leaf biomass in maize 
canopies. Geophys Res Lett. 2003;30:1–4. https:// doi. org/ 10. 1029/ 2002G 
L0164 50.

 55. Alexander N, Morley D, Medlock J, Searle K, Wint W. A first attempt at 
modelling roe deer (Capreolus capreolus) distributions over Europe. Open 
Health Data. 2014;2:e2. https:// doi. org/ 10. 5334/ ohd. ah.

 56. Ruiz-Fons F, Gilbert L. The role of deer as vehicles to move ticks, Ixodes 
ricinus, between contrasting habitats. Int J Parasitol. 2010;40:1013–20. 
https:// doi. org/ 10. 1016/j. ijpara. 2010. 02. 006.

 57. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas 
under two or more correlated receiver operating characteristic curves: a 
nonparametric approach. Biometrics. 1988;44:837–45. https:// doi. org/ 10. 
2307/ 25315 95.

 58. Konowalik K, Nosol A. Evaluation metrics and validation of presence-
only species distribution models based on distributional maps with 
varying coverage. Sci Rep. 2021;11:1–15. https:// doi. org/ 10. 1038/ 
s41598- 020- 80062-1.

 59. Schratz P, Muenchow J, Iturritxa E, Richter J, Brenning A. Hyperparameter 
tuning and performance assessment of statistical and machine-learning 
algorithms using spatial data. Ecol Model. 2019;406:109–20. https:// doi. 
org/ 10. 1016/j. ecolm odel. 2019. 06. 002.

 60. Lobo JM, Jiménez-Valverde A, Real R. AUC: a misleading measure of 
the performance of predictive distribution models. Glob Ecol Biogeogr. 
2008;17:145–51. https:// doi. org/ 10. 1111/j. 1466- 8238. 2007. 00358.x.

 61. Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distri-
bution models: prevalence, kappa and the true skill statistic (TSS). J Appl 
Ecol. 2006;43:1223–32. https:// doi. org/ 10. 1111/j. 1365- 2664. 2006. 01214.x.

 62. Zurell D. mecofun: useful functions for macroecology and species distri-
bution modelling. R package version 0.1.1. 2020. Available from: https:// 
gitup. uni- potsd am. de/ macro ecolo gy/ mecof un.

 63. Flach P, Kull M. Precision-recall-gain curves: PR analysis done right. In: 
Cortes C, Lawrence N, Lee D, Sugiyama M, Garnett R, editors. Advances in 
neural information processing systems 28. Curran Associates, Inc.; 2015. 
p. 838–846. Available from: https:// proce edings. neuri ps. cc/ paper_ files/ 
paper/ 2015/ file/ 33e80 75e99 70de0 cfea9 55afd 4644b b2- Paper. pdf.

 64. Kull M, Flach P. prg: creates the precision-recall-gain curve and calculates 
the area under the curve. R package version 0.5.1. 2023.

 65. Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FKA. Evaluating resource 
selection functions. Ecol Model. 2002;157:281–300. https:// doi. org/ 10. 
1016/ S0304- 3800(02) 00200-4.

 66. Di Cola V, Broennimann O, Petitpierre B, Breiner FT, D’Amen M, Randin C, 
et al. ecospat: an R package to support spatial analyses and modeling of 
species niches and distributions. Ecography. 2017;40:774–87. https:// doi. 
org/ 10. 1111/ ecog. 02671.

 67. Hamner B, Frasco M. Metrics: evaluation metrics for machine learning. R 
package version 0.1.4. 2018. Available from: https:// CRAN.R- proje ct. org/ 
packa ge= Metri cs.

 68. Rizzoli A, Silaghi C, Obiegala A, Rudolf I, Hubálek Z, Földvári G, et al. Ixodes 
ricinus and its transmitted pathogens in urban and peri-urban areas in 
Europe: new hazards and relevance for public health. Front Public Health. 
2014;2:1–26. https:// doi. org/ 10. 3389/ fpubh. 2014. 00251.

 69. Kowalec M, Szewczyk T, Welc-Faleciak R, Siński E, Karbowiak G, Bajer 
A. Ticks and the city—are there any differences between city parks 

https://doi.org/10.1016/j.ecolmodel.2019.108815
https://doi.org/10.1016/j.envsoft.2017.12.001
https://doi.org/10.32614/RJ-2018-009
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=terra
https://doi.org/10.1002/ece3.10635
https://doi.org/10.1002/ece3.10635
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1111/2041-210X.12252
https://doi.org/10.1002/ecm.1486
https://doi.org/10.1002/ecm.1486
https://doi.org/10.1111/geb.13639
https://doi.org/10.1111/geb.13639
https://doi.org/10.7717/peerj.3093
https://doi.org/10.7717/peerj.3093
https://doi.org/10.1111/geb.12268
https://doi.org/10.1016/j.ecolmodel.2016.09.019
https://doi.org/10.17161/bi.v15i2.13384
https://doi.org/10.17161/bi.v15i2.13384
https://doi.org/10.1186/1472-6785-11-20
https://doi.org/10.1186/1472-6785-11-20
https://www.eda.admin.ch/aboutswitzerland/de/home/umwelt/geografie/geografie---fakten-und-zahlen.html
https://www.eda.admin.ch/aboutswitzerland/de/home/umwelt/geografie/geografie---fakten-und-zahlen.html
https://www.eda.admin.ch/aboutswitzerland/de/home/gesellschaft/bevoelkerung/die-bevoelkerung---fakten-und-zahlen.html
https://www.eda.admin.ch/aboutswitzerland/de/home/gesellschaft/bevoelkerung/die-bevoelkerung---fakten-und-zahlen.html
https://www.eda.admin.ch/aboutswitzerland/de/home/gesellschaft/bevoelkerung/die-bevoelkerung---fakten-und-zahlen.html
https://doi.org/10.1371/journal.pone.0290942
https://www.parcs.ch/nwp/pdf_public/2014/26279_20140130_124951_Gaeumann_PhD_Thesis2010.pdf
https://www.parcs.ch/nwp/pdf_public/2014/26279_20140130_124951_Gaeumann_PhD_Thesis2010.pdf
https://doi.org/10.1111/2041-210X.12352
https://doi.org/10.1214/10-AOAS331
https://CRAN.R-project.org/package=dismo
https://CRAN.R-project.org/package=dismo
https://doi.org/10.1186/s12942-017-0114-8
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1016/S0034-4257(01)00342-X
https://doi.org/10.1029/2002GL016450
https://doi.org/10.1029/2002GL016450
https://doi.org/10.5334/ohd.ah
https://doi.org/10.1016/j.ijpara.2010.02.006
https://doi.org/10.2307/2531595
https://doi.org/10.2307/2531595
https://doi.org/10.1038/s41598-020-80062-1
https://doi.org/10.1038/s41598-020-80062-1
https://doi.org/10.1016/j.ecolmodel.2019.06.002
https://doi.org/10.1016/j.ecolmodel.2019.06.002
https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://gitup.uni-potsdam.de/macroecology/mecofun
https://gitup.uni-potsdam.de/macroecology/mecofun
https://proceedings.neurips.cc/paper_files/paper/2015/file/33e8075e9970de0cfea955afd4644bb2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/33e8075e9970de0cfea955afd4644bb2-Paper.pdf
https://doi.org/10.1016/S0304-3800(02)00200-4
https://doi.org/10.1016/S0304-3800(02)00200-4
https://doi.org/10.1111/ecog.02671
https://doi.org/10.1111/ecog.02671
https://CRAN.R-project.org/package=Metrics
https://CRAN.R-project.org/package=Metrics
https://doi.org/10.3389/fpubh.2014.00251


Page 17 of 17Bald et al. Parasites & Vectors           (2025) 18:22  

and natural forests in terms of tick abundance and prevalence of 
spirochaetes? Parasit Vectors. 2017;10:1–19. https:// doi. org/ 10. 1186/ 
s13071- 017- 2391-2.

 70. Hansford KM, Fonville M, Gillingham EL, Coipan EC, Pietzsch ME, Krawczyk 
AI, et al. Ticks and Borrelia in urban and peri-urban green space habitats 
in a city in southern England. Ticks Tick Borne Dis. 2017;8:353–61. https:// 
doi. org/ 10. 1016/j. ttbdis. 2016. 12. 009.

 71. Schulz M, Mahling M, Pfister K. Abundance and seasonal activity of quest-
ing Ixodes ricinus ticks in their natural habitats in southern Germany in 
2011. J Vector Ecol. 2014;39:56–65. https:// doi. org/ 10. 1111/j. 1948- 7134. 
2014. 12070.x.

 72. Bucklin DN, Basille M, Benscoter AM, Brandt LA, Mazzotti FJ, Romañach SS, 
et al. Comparing species distribution models constructed with different 
subsets of environmental predictors. Diversity Distrib. 2014;21:23–35. 
https:// doi. org/ 10. 1111/ ddi. 12247.

 73. Hauser G, Rais O, Morán Cadenas F, Gonseth Y, Bouzelboudjen M, Gern 
L. Influence of climatic factors on Ixodes ricinus nymph abundance 
and phenology over a long-term monthly observation in Switzerland 
(2000–2014). Parasit Vectors. 2018;11:1–12. https:// doi. org/ 10. 1186/ 
s13071- 018- 2876-7.

 74. Gern L, Morán Cadenas F, Burri C. Influence of some climatic factors on 
Ixodes ricinus ticks studied along altitudinal gradients in two geographic 
regions in Switzerland. Int J Med Microbiol. 2008;298:55–9. https:// doi. 
org/ 10. 1016/j. ijmm. 2008. 01. 005.

 75. Rochat E, Vuilleumier S, Vuilleumier S, Aeby S, Greub G, Joost S. Nested 
species distribution models of Chlamydiales in Ixodes ricinus (tick) hosts in 
Switzerland. Appl Environ Microbiol. 2020;87:e01237-20. https:// doi. org/ 
10. 1128/ aem. 01237- 20.

 76. Olivieri E, Gazzonis AL, Zanzani SA, Veronesi F, Manfredi MT. Seasonal 
dynamics of adult Dermacentor reticulatus in a peri-urban park in south-
ern Europe. Ticks Tick Borne Dis. 2017;8:772–9. https:// doi. org/ 10. 1016/j. 
ttbdis. 2017. 06. 002.

 77. Vanwambeke SO, Van Doninck J, Artois J, Davidson RK, Meyfroidt P, Jore 
S. Forest classes and tree cover gradient: tick habitat in encroached areas 
of southern Norway. Exp Appl Acarol. 2016;68:375–85. https:// doi. org/ 10. 
1007/ s10493- 015- 0007-0.

 78. Ribeiro R, Eze JI, Gilbert L, Macrae A, Duncan A, Baughan J, et al. Linking 
human tick bite risk with tick abundance in the environment: a novel 
approach to quantify tick bite risk using orienteers in Scotland. Ticks Tick 
Borne Dis. 2023;14:102109. https:// doi. org/ 10. 1016/j. ttbdis. 2022. 102109.

 79. Vanwambeke SO, Šumilo D, Bormane A, Lambin EF, Randolph SE. Land-
scape predictors of tick-borne encephalitis in Latvia: land cover, land use, 
and land ownership. Vector Borne Zoonotic Dis. 2010;10:497–506. https:// 
doi. org/ 10. 1089/ vbz. 2009. 0116.

 80. Brun P, Zimmermann NE, Hari C, Pellissier L, Karger DN. Global climate-
related predictors at kilometer resolution for the past and future. 
Earth Syst Sci Data. 2022;14:5573–603. https:// doi. org/ 10. 5194/ 
essd- 14- 5573- 2022.

 81. Justen L, Carlsmith D, Paskewitz SM, Bartholomay LC, Bron GM. Identifica-
tion of public submitted tick images: a neural network approach. PLoS 
ONE. 2021;16:e0260622. https:// doi. org/ 10. 1371/ journ al. pone. 02606 22.

 82. Omodior O, Saeedpour-Parizi MR, Rahman MK, Azad A, Clay K. Using 
convolutional neural networks for tick image recognition—a preliminary 
exploration. Exp Appl Acarol. 2021;84:607–22. https:// doi. org/ 10. 1007/ 
s10493- 021- 00639-x.

 83. Lernout T, De Regge N, Tersago K, Fonville M, Suin V, Sprong H. Prevalence 
of pathogens in ticks collected from humans through citizen science 
in Belgium. Parasit Vectors. 2019;12:1–11. https:// doi. org/ 10. 1186/ 
s13071- 019- 3806-z.

 84. OpenStreetMap.: base map from OpenStreetMap. 2024. Available from: 
https:// www. opens treet map. org/ copyr ight.

 85. CIESIN Center For International Earth Science Information Network 
Columbia University.: Gridded population of the world, Version 4 
(GPWv4): Population density, Revision 11. 2017. https:// doi. org/ 10. 7927/ 
H49C6 VHW.

 86. Mu H, Li X, Wen Y, Huang J, Du P, Su W, et al. A global record of annual ter-
restrial human footprint dataset from 2000 to 2018. Sci Data. 2022;9:1–9. 
https:// doi. org/ 10. 1038/ s41597- 022- 01284-8.

 87. Nelson A, Weiss DJ, van Etten J, Cattaneo A, McMenomy TS, Koo J. A suite 
of global accessibility indicators. Sci Data. 2019;6:1–9. https:// doi. org/ 10. 
1038/ s41597- 019- 0265-5.

 88. EEA—European Environment Agency, European Union, Copernicus 
Land Monitoring Service.: CORINE land cover 2018 (vector/raster 100 m), 
Europe, 6-yearly. 2018. Available from: https:// land. coper nicus. eu/ en/ 
produ cts/ corine- land- cover/ clc20 18.

 89. Winkler K, Fuchs R, Rounsevell M, Herold M. Global land use changes are 
four times greater than previously estimated. Nat Commun. 2021;12:1–
10. https:// doi. org/ 10. 1038/ s41467- 021- 22702-2.

 90. Cao B, Yu L, Li X, Chen M, Li X, Hao P, et al. A 1 km global cropland dataset 
from 10,000 BCE to 2100 CE. Earth Syst Sci Data. 2021;13:5403–21. https:// 
doi. org/ 10. 5194/ essd- 13- 5403- 2021.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1186/s13071-017-2391-2
https://doi.org/10.1186/s13071-017-2391-2
https://doi.org/10.1016/j.ttbdis.2016.12.009
https://doi.org/10.1016/j.ttbdis.2016.12.009
https://doi.org/10.1111/j.1948-7134.2014.12070.x
https://doi.org/10.1111/j.1948-7134.2014.12070.x
https://doi.org/10.1111/ddi.12247
https://doi.org/10.1186/s13071-018-2876-7
https://doi.org/10.1186/s13071-018-2876-7
https://doi.org/10.1016/j.ijmm.2008.01.005
https://doi.org/10.1016/j.ijmm.2008.01.005
https://doi.org/10.1128/aem.01237-20
https://doi.org/10.1128/aem.01237-20
https://doi.org/10.1016/j.ttbdis.2017.06.002
https://doi.org/10.1016/j.ttbdis.2017.06.002
https://doi.org/10.1007/s10493-015-0007-0
https://doi.org/10.1007/s10493-015-0007-0
https://doi.org/10.1016/j.ttbdis.2022.102109
https://doi.org/10.1089/vbz.2009.0116
https://doi.org/10.1089/vbz.2009.0116
https://doi.org/10.5194/essd-14-5573-2022
https://doi.org/10.5194/essd-14-5573-2022
https://doi.org/10.1371/journal.pone.0260622
https://doi.org/10.1007/s10493-021-00639-x
https://doi.org/10.1007/s10493-021-00639-x
https://doi.org/10.1186/s13071-019-3806-z
https://doi.org/10.1186/s13071-019-3806-z
https://www.openstreetmap.org/copyright
https://doi.org/10.7927/H49C6VHW
https://doi.org/10.7927/H49C6VHW
https://doi.org/10.1038/s41597-022-01284-8
https://doi.org/10.1038/s41597-019-0265-5
https://doi.org/10.1038/s41597-019-0265-5
https://land.copernicus.eu/en/products/corine-land-cover/clc2018
https://land.copernicus.eu/en/products/corine-land-cover/clc2018
https://doi.org/10.1038/s41467-021-22702-2
https://doi.org/10.5194/essd-13-5403-2021
https://doi.org/10.5194/essd-13-5403-2021

	Assessing tick attachments to humans with citizen science data: spatio-temporal mapping in Switzerland from 2015 to 2021 using spatialMaxent
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Modeling approach
	Study area
	Tick reports
	Background pointspseudo-absences
	Environmental variables
	Absence points
	Evaluation

	Results
	Selected model parameters
	Assessment of model performance
	Time series maps and overall risk

	Discussion
	Appendix A
	Acknowledgements
	References


